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1. Problem statement

n-way k-shot object detection
Given support examples {(x1, a1), . . . , (xnk, ank)} it consists in detecting all
occurences of classes in C (|C| = n) in a query image xq .
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2. Related work

Our work is astride two research areas: object detection and few-shot learning

◦ Object detection: Faster R-CNN (Ren et al. 2015)

Figure 1: Faster R-CNN.

◦ Few-shot Learning: Prototypical networks (Snell, Swersky, and Zemel 2017)

Figure 2: Prototypical networks.
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3. Prototypical Faster R-CNN

Principle: replace classification branches in Faster R-CNN by prototypical networks.

Figure 3: Prototypical Faster R-CNN architecture.

For each generated box b an embedding vector is computed, objectness and classification scores
are attributed according to the distances between embeddings and class prototypes.

p(xj,b|yj,b = c) = exp
(−d(zj,b, pc)

2

2σ2
)
, (1)

oj,a = max
c∈Ci

p(xj,b|c), (2)

p(c|xj,b) =
p(xj,b|c)∑

c∈Ci∪{∅}
p(xj,b|c)

. (3)
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4. Results

Experimental protocol: some classes are retained from the dataset during training
(test classes). At test time performance is assessed both on training and test classes.

k shots 1 3 5 10

Split A Train classes 0.275 ± 0.01 0.352 ± 0.02 0.390 ± 0.01 0.384 ± 0.02
Test classes 0.047 ± 0.02 0.024 ± 0.01 0.038 ± 0.01 0.041 ± 0.01

Split B Train classes 0.415 ± 0.03 0.392 ± 0.03 0.434 ± 0.02 0.414 ± 0.03
Test classes 0.08 ± 0.01 0.101 ± 0.02 0.121 ± 0.01 0.101 ± 0.02

Table 1: Mean average precision over 5 runs on DOTA dataset with 95% confidence interval. Results are given for two different train/test
classes split. Split A: {0, 1, 4}, Split B: {7, 11, 13} (only test classes are given).

◦ Low performance, especially for test classes
explained by overlapping cluster in
representation space.

◦ For training classes performance slightly
lower than regular training. Clusters well
separated.

Figure 4: TSNE projection of the embeddings 4



5. Perspectives

Key difficulties and potential solutions:

◦ Faster R-CNN is not well suited for Few-shot object detection
- Low performance in RPN can cripple classification head.
- Two-stages and anchors approach bring unecessary complexity.
→ Change detection framework with one stage end-to-end, e.g. FCOS (Tian et al. 2019).

◦ Support examples are unlikely to match with query image
- Semantic information may be dominated by background within a patch.
- Classification scores depend on background similarity between example and patch.
→ Adapt prototypes to match embeddings through attention mechanism.
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Thank you for your attention

Any questions �

� pierre.lejeune@lipn.univ-paris13.fr
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