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1. Few-Shot Object Detection

n-way k-shot object detection
Given support examples {(x1, a1), . . . , (xnk, ank)} it consists in detecting all
occurrences of classes in C (|C| = n) in a query image xq.

Query image
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2.1 Related work - Faster R-CNN for Object Detection

Faster R-CNN (Ren et al. 2015) is a 2-stages approach for Object Detection

- Backbone network: large CNN to extract features.

- Region Proposal Network (RPN): lightweight CNN that proposes boxes.

- Classification and regression head: MLP that predicts box coordinates and class.

Robust and well-performing architecture, extensively tested in literature.

Figure 1: Faster R-CNN architecture introduced by (Ren et al. 2015)
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2.2 Related work - Few-Shot Learning and Prototypical Networks

Prototypical networks (Snell, Swersky, and Zemel 2017) have been introduced for
Few-Shot Classification

- Learn an embedding function
- Compute prototypes vectors from available class examples
- Classify an image according to the distance between its representation and the
prototypes

The embedding space is semantically organized: easy adaptation to new classes.

Figure 2: Diagram explaining the principle of Prototypical Networks (Snell, Swersky, and Zemel
2017)
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3.1 Prototypical Faster R-CNN - Architecture

Main principle: integrate prototypical networks inside Faster R-CNN.
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3.1 Prototypical Faster R-CNN - Architecture

Main principle: integrate prototypical networks inside Faster R-CNN.
RPN: multi-class prototypes but only
outputs objectness score (i.e. binary
classification).

oj = max
c∈Ci

exp
(−d(zj, pc)2

2σ2
)

Figure 3: Prototypical Faster-RCNN architecture.
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Classification head: prototypical networks
attribute class scores to RoI extracted
from RPN boxes (Karlinsky et al. 2019).

p(c|xj,a) =
exp

(−d(zj,pc)
2

2σ2

)
∑

c′∈Ci∪{∅}
exp

(−d(zj,pc′ )2

2σ2

)

Figure 3: Prototypical Faster-RCNN architecture.
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3.2 Prototypical Faster R-CNN - Training strategy

Class separation: classes are split into base classes Cbase and novel classes Cnovel
before training.

Training is done episodically.

Algorithm 1 : Training procedure
1: for i in range [1,Nep] do
2: Randomly sample Cep ⊂ Cbase
3: Build a support set with k examples for each c ∈ Cep from the dataset
4: Compute prototypes from the support set
5: Sample a query set Qep containing all classes from Cep from the dataset
6: Optimize the objective with Qep
7: end for
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3.3 Prototypical Faster R-CNN - Loss functions

Region Proposal Network

LRreg(bRi , b̂
R
i ) = SmoothL1Loss(bRi , b̂

R
i ),

LRobj(oi, ôi) = ôi log(oi) + (1− ôi) log(1− oi),

bHi box prediction from the RPN
oi objectness score from the RPN

Classification and regression head

LHreg(bHj , b̂
H
j ) = SmoothL1Loss(bHj , b̂

H
j ),

LHcls(cj, ĉj) = − log(cj).

bHj box prediction from the head
cj classification scores from the head

The overall objective is defined as:

L = LRreg + LRobj + LHreg + LHcls.
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4.1 Experimental Results - mAP on DOTA

Experimental Protocol: Training with base classes and evaluation on novel classes.

- DOTA dataset (Xia et al. 2018): aerial images (16 classes, 200k objects)

- 2 distinct class splits

- Episodic evaluation with random support set

- No fine-tuning

# Shots 1 3 5 10

Split A Base classes 0.275 ± 0.01 0.352 ± 0.02 0.390 ± 0.01 0.384 ± 0.02
Novel classes 0.047 ± 0.02 0.024 ± 0.01 0.038 ± 0.01 0.041 ± 0.01

Split B Base classes 0.415 ± 0.03 0.392 ± 0.03 0.434 ± 0.02 0.414 ± 0.03
Novel classes 0.08 ± 0.01 0.101 ± 0.02 0.121 ± 0.01 0.101 ± 0.02

Table 1: Mean average precision over 5 runs on DOTA dataset with 95% confidence interval.
Results are given for two different base/novel classes split. Split A: [plane, ship, and tennis
court], Split B: [harbor, helicopter, and soccer ball field] (only test classes are given).
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4.2 Experimental Results - Embedding space visualization

(a) Before training (b) After training

Figure 4: TSNE visualization on the embedding space, before and after training. Training
organizes this space semantically and reduces the threadlike patterns representing close patches
in the input image.
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5. Analysis and conclusion

Key difficulties and potential solutions:

◦ Faster R-CNN is not well suited for few-shot object detection
- Low performance in RPN can cripple classification head.
- Two-stages and anchors approaches bring unnecessary complexity.
→ Change detection framework for one-stage w/o anchors, e.g. FCOS (Tian et al. 2019).

◦ Support examples are unlikely optimal for a query image
- Semantic information may be dominated by background within a patch.
- Classification scores depend on background similarity between examples and the
patch.

→ Adapt prototypes to match query through an attention mechanism.
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Thank you for your attention

Any questionsQuestion-Circle

Envelope pierre.lejeune@edu.univ-paris13.fr

GLOBE-AMERICAS https://pierlj.github.io
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