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Industrial Context and Objectives

Context of this PhD: CIFRE between COSE and L2TI.

7cose 2T ]

- SMB from aeronautic and defense sector. Laboratoire de Traitement et Transport de
l'Information (L2TI - UR 3043).

Organized in two teams:

- Tier-1supplier for French state.

COSE develops, among other products, aerial
surveillance systems. - Multimedia team

- Network team
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11 Industrial Context and Objectives

This PhD falls within the scope of the CAMELEON project: COSE’s next-gen airborne surveillance
system.

GEOspatial INTelligence (GEOINT)

Georeferenced pieces of information about human activity on earth.
Includes coordinates, date, and metadata.

Figure 2: Global Scanner System,
to be replaced by CAMELEON.

Figure 1: Creation of GEOINT in CAMELEON

PhD Objective: Automate the creation of GEOINT
» Localization of objects of interest in the images
» Recognition and classification of the objects.
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PhD Objective: Automate the creation of GEOINT Constraints:
» Localization of objects of interest in the images - Images are extremely large.
» Recognition and classification of the objects. - On-board resources are limited.

- Training sets are not available.
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1.2 Regular Object Detection Definition

- Given a set of classes C, find all occurrences of objects belonging to any class ¢ € C
in an image I. Each object i is represented as a bounding box b; = (x,y, w, h, c).

- Large annotated dataset available.
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Regular Object Detection

- Given a set of classes C, find all occurrences of objects belonging to any class ¢ € C
in an image I. Each object i is represented as a bounding box b; = (x,y, w, h, c).

- Large annotated dataset available.

Detection model —

Detection results

C = {Baseball-diamond, Swimming-pool, Ground-track-field}
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1.3 Few-Shot Learning Principle

Regular Learning setting

Training set

Cn

Learning model
weights from the

o training set

Class probability
vector
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1.4 Few-Shot Object Detection Definition

N-way K-shot object detection

- Given support examples {(l1, b1), . .., (Ink, bnk)} it consists in detecting all occurrences
of classes in C (|C| = N) in a query image Iq.

- Classes divided in two sets: base classes for which plenty of annotations are available,
and novel classes for which only K annotations are available per class.
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1.5 Summary of the Contributions

Investigation of FSOD challenge with aerial Images:
» Small objects are more numerous in aerial images, poor examples in the few-shot regime.
» Afirst approach with metric learning: Prototypical Faster R-CNN.
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» Cross-Scale Query-Support Alignment for small object Detection.

Few-Shot DiffusionDet a Fine-tuning approach:
» FSDiffusionDet outperforms all methods on aerial images.
» Promising results in the challenging Cross-Domain scenarios.

Carefully designed loss functions can improve small object detection:
» Scale-adaptive Intersection over Union (SloU) improves small object detection.
» SloU loss allows precise control of the training balance between small and large objects.
» SloU aligns better with human perception, improves model evaluation.
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21 Small Objects are Difficult to Detect

First contribution: Investigation of the performance gap between Aerial and Natural images in
FSOD
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Figure 3: Few-Shot Detection performance compared on three distinct datasets.
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Small Objects are Difficult to Detect

Aerial images vs. Natural images

(a) DOTA (b) coco
Figure 4: Examples images from two datasets.

Key specificities of aerial images:
- More and smaller objects
- Arbitrary rotations
- Densely packed objects
» Small objects are poor examples for the models and miscondition the detection.

» Few-Shot performance increases with object size, faster than in regular OD.
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2.2 More Complex Scenarios in Real Applications

FSOD setting assumes a few assumptions — unrealistic for real application
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Figure 5: Generalized Few-Shot Object Detection (G-FSOD) principle.
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Figure 6: Cross-Domain Few-Shot Object Detection (CD-FSOD)

Figure 5: Generalized Few-Shot Object Detection (G-FSOD) principle. principle.
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2.2 More Complex Scenarios in Real Applications

FSOD setting assumes a few assumptions — unrealistic for real application

CD-FSOD is of practical use for COSE:

- While real case images will be aerial
images, general aspects can change
drastically (weather conditions, seasons,
altitude, etc.).

- Classes are unknown before a mission, but
their number is limited.

- Can rely on extremely large datasets for
base training.

Increased difficulty: the model must adapt both
to novel classes and new kinds of images.

Object Detection in Aerial Images in Scarce Data Regime

g
Cross-Domain Few-Shot Object Detection
(CD-FSOD):

Source domain (natural images) Target domain (aerial images)
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v
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Figure 5: Cross-Domain Few-Shot Object Detection (CD-FSOD)
principle.
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2.2 More Complex Scenarios in Real Applications

Key takeaways

- Increased difficulty of detecting small objects in the Few-Shot Regime.
- FSOD performance increases with object size, but the trend is stronger than in regular settings.

- G-FSOD and CD-FSOD are more realistic but more challenging scenarios than Few-Shot.

CD-FSOD is of particular interest to COSE as it matches its applications.
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Key takeaways

- Increased difficulty of detecting small objects in the Few-Shot Regime.
- FSOD performance increases with object size, but the trend is stronger than in regular settings.

- G-FSOD and CD-FSOD are more realistic but more challenging scenarios than Few-Shot.

CD-FSOD is of particular interest to COSE as it matches its applications.

Main research orientations of this Thesis:
» Improving the few-shot detection of small objects (section 3).

» Designing methods for Cross-Domain scenarios (section 4).
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3. Improving Small Object Detection in the Few-Shot Regime

Overview of the FSOD Literature
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3. Improving Small Object Detection in the Few-Shot Regime

Overview of the FSOD Literature - Fine-tuning vs. Attention-based approaches
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Improving Small Object Detection in the Few-Shot Regime

Overview of the FSOD Literature - Application on Aerial Images

Hoprosch Aobreviation Vense_oate Detecton Framework Maltacale Datasets Rerial Naturalimages

W IKang etal, 2015] @ 2o Yo "o Fasca  COCO atural

0500-CACE [Hsieh ot a, 2015] NEURIPS 2019 Faster RCN Yes Pascl | COCO Natral

et R-CNN [V et a. 2015] v 2019 Faster RN o Pascal | oo Naural

FSOD-RSITK U etal, 2021] ToRS 2020 o0 Yo DIOR ] NP VHR il

ARPN Q. fan et L. 2020) R 2020 faster RN es coco Natural

VEOW Y xao et al 2020] v 200 faste RENN ves ascal | OO Natural

imeta, 20201 s 200 faster RCN ves al Natural

OSODWFT .U, L Zhing,etal, 2020]  reprint 2020 Fcos ves sl oo gt o Naural

ONCE . ererua etal, 2020): _CVPR 2020 Contr et 1o coco / beepfastion Natral

WSAAN 2. Xiao et 20 ors 2021 Yo w Reral

5 01 [Huruan Gao et al 2021 nort 2021 e | WP VR Serial

Attention-based Meta-FRCNN [G. Han, ang, et al, 2022] \ 2022 Faster RCNN. Yes Pascal / COCO. Natural

5 DFTR [G.Zhang, Luo, et o, 2022] TN 2021 e No ascl | COCO. Naural

LW, i . U et L, preprint 2021 faster RON ves fascl | COCO. Naural

OANA T 1. Chen et al, 2021] ™2 faster RCN Yes ascal | COCO. Natural

P .0 etal, 2021] Access 2021 faster RENN ves Pascal | OO Natural

JoAGR [chu etal, 202 ap 201 ves Pascal | o0 Natwral

15500 (A L et 2021] R 2021 faster RN ves pascl | COCO Naural

A X Huang el 2021] P 2021 Faster RO NWPU VHR-10 / DIOR i

7500-7C1{G.Han, M, et a 2022) am 20m Faster RCUN o Pascl | cOC Natral

SAR DRI [Shi: Chen et al, 2022 o 202 Faster RCN o Fusa e el

#500-pS1 (Ouyang et sl 2022] o 20 ves ascl | COCO. stural

SAFT (Y. zhao et al, 2022] e 202 fcos ves ascl | COCO. Naural

APSP [, Lee et 202] wiev 20 Faster REAN "o Pascal | OO Natural

Kes0D 5. Zhan et 1, 2022] e o faster R ves Pascal | oo ot

FS0DS [Zhou et al,, 2022] TGRS 2022 Yoo Yes. SMCDD-F Aerial

TNCFS0D [ L e al, 2023] Aoy 202 Faster RN Yo NP VHR/ DIOR  HRRSD Serial

7500-1cs iang et a, 2023] vy 2023 Faster RN ves Pascal | COCO Naural

Attention)] PAPDeL . Zhang, cul, ea, 2021 nce 20 Genter vt "o Fascal | COCO atural

UPEA W Y. Han, et a, 2021] v 2 Faster RCN ves Pascl | COCO Naural

Metric Learning GenDet (iyang L et ol 2021] WS 2o rcos ves Pascal | oo Naural

Repiet Karlinsey et o, 2015] ) Faster RN Ver Fascl [ ImageNet Loc Watual

RN-750D [ang et L. 3020] NeURPS 2020 faster RN Yes ascal | magehet Loc Natural

Metric learning MoooD DX Zaoet . 20211 v 2021 Faster RCNN No Pascal / COCO Natural

SCE {6 Sun et L. 2021] R 20 faster RON ves fascl | COCO. Naural

GD-7S0D[A W0, 5. Zhac, eal, 2021]  NEURIPS 2021 aster RENN ves Pascal | OO Naturat

570 . chen et at, 20161 w018 Taster RO es Fasca ] COCO / mageNet Loc el

NSPSR s i 3, 2020) v 200 faster RENN ves ascal | COCO Natural

T X, Wans et al, 20201 200 faster RO ves Pascal{ COCO { 1S Natwral

WOrG 2 Fan et al, 20211 a0z Faster RCNN ves Pascl | COCO Naural

allu-7S0D W Zhang ot a1, 2021) e 201 Faster RO ves Pascal | oo Natwral

0P ol et . 2021] I 021 Faster RO Yo SAID NP VR Aerial

C Kt et L, 2022] QR 2021 Faster RN o Pascal | o0 Naural

FSCH Y.L eta, 2021] 202 Faster RN ves ascl | COCO. Naural

ine-tuni 01 (oo et al, 20211 NEURIPS 2021 faster RON ves fascl | COCO. Naural

Fine-tuning DeFRCN [Qiao et o, 2021] oo 2021 Faster RENN Yes pascal | €OCO. Natural

Strategy SMPLIYxu el 2021] ToRs 2022 Y10 "o i (plane onl) Aerial

DETRes [ tal, 2022] [T Deformable DETR Yes oo Natural

Con [urgus et . 2022 w2022 Faster RN no pascal | coco Natral

i L, 20 Tors 2022 Faster RO Yo NWPU VHR10 / DIOR Aerial

NIPE W, L, CWang, et oL, 2022]  lcAssp 2022 Faster RN Yes coco Watural

she tal, 2022] wos 2022 Faster RCUN Yes oo Natural

MOB 5. Wo et at, 2022] es 202 faster ROUN No ascl | COCO. Naural

0B 5.5, Gao etai. 202211 NEURIPS 2022 faster RON ves ascl | COCO. Naural

CPp-00 [in et al, 2023] preprint 2023 Faster RCAN Yos pasaal | OO Naural

-DETR [Dong et al, 2022]3 w20 Deformabie DETR o Fascl | OO Naural

5 Wetabet Y- Wang e al 2015] [ Faster R "o Pascal [ COt0 [

Meta-Learning Sloh vn e al, 202311 R 202 Faster RN o coco/ s Natwral

O-75URIT L Zhao etal. 2022) T Faster R ves Wlipl datasets atural

. Acto FoD [Yipeng Gao et 3, 2022) v 02 Yoo ves Mltple dtssets ot
Cross-Domain CD-CutMix [Nakamura et al., 2022] ACCY 2022 Faster RCNN. No Multiple datasets
ionget L. 26221 praprint 2022 Faster RCHN e Mlipl datasets
OM0B K Lee tal,2022] v Faster ROUN I Mlipl datasets

Object Detection in Aerial Images in Scarce Data Regime PhD Defense - Pierre LE JEUNE 12




3. Improving Small Object Detection in the Few-Shot Regime

Overview of the FSOD Literature - Cross-Domain FSOD
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31 Cross-Scale Query-Support Alignment (XQSA)

Attention-base Few-Shot Object Detection principle:
Adapt features from the query image on the fly during inference from a few annotated support
examples. Built from three main components:

- Backbone: extracts features from the images.
- Query-Support Combination Module: combines query and support features.
- Detection Head: performs object detection in a class-agnostic manner.

[0 Leamable module
Shared weights

Feature map

M} Detection | Bounding
‘ Head bores dlass 1

M Detection " Bounding
g Head boes class ¢!

Figure 6: Attention-based FSOD principle.
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Figure 6: Attention-based FSOD principle.

Great variety of Query-Support Combination Modules
» Introduction of a modular framework, called Alignment Attention Fusion (AAF) Framework, to
ease comparison and re-implementation [Le Jeune et al., 2022].
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Objective: propose a better Query-Support combination block to improve small object detection.
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XQSA’'s motivation
- Combines query and support features from different scales together.
- Allows matching query and support objects from different sizes.
» properties not available in the literature.
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31 Cross-Scale Query-Support Alignment (XQSA)

Objective: propose a better Query-Support combination block to improve small object detection.

XQSA’s motivation
- Combines query and support features from different scales together.
- Allows matching query and support objects from different sizes.
» properties not available in the literature.

Following our AAF framework, the Query-Support combination block is split into three components:
- Self Attention: filters query and support features independently.
- Spatial Alignment: locally compares features from query and support.
- Feature Fusion: aggregates relevant information for detection.

Cross-scale Query-Support

\
Support Self Alignment .
features | Attention [

. ) Class-

0 Spatial Fasion : specific

1 Alignment h query

Query 1 Self , features
features : Anentlon '
1
W ,

Figure 7: Overall structure of the Cross-Scale Query-Support Alignment block.
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31 Cross-Scale Query-Support Alignment (XQSA)
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Figure 8: Illustration of the Spatial Alignment block in XQSA.
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Cross-Scale Query-Support Alignment (XQSA)

Comparison with two existing methods:

- Feature Reweighting (FRW) [Kang et al., 2019].
- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023].

» Two aerial datasets DOTA and DIOR, and two natural datasets Pascal VOC and MS COCO.

DOTA DIOR Pascal VOC Ms coco
All s M L Al s M L All s M L All s M L

Base FRW  49.04 2548 5917 6337 6220 821 4866 80.67 6321 1567 47.94 8173 2903  13.08 3587  48.00
Classes DPANA 5398 3700 6227 7032 6271 1092 4934 8317 6517 1814 5058 80.11 3814 2330 5185 5638
X0SA 5111 2610 5941 6430 59.88  10.64 4569 8234 6213 1560 4864 7594 3156  16.13  40.13  49.83

Novel FRW 3729 1399 3411 5931 3629 248 3374 59.38 4872 1644 2671 6827 2409 1153 2245 3869
Classes DANA 3638 1433 4000 64k 3818 321 3491  60.99 5226 1005 2467 67.23 2475 1201 2940 37.95
XOSA 4100 17.84 4457 5446 4151 412 4069 5821 53.94 19.46 3486  66.14 2503 1257 2605 3855

Table 1: Performance comparison between XQSA, FRW, and DANA. mAPq 5 values are reported separately for base (top) and novel
(bottom) classes on DOTA, DIOR, Pascal VOC, and MS COCO with K = 10 shots. mAP values are reported for All, Small (vwh < 32),
Medium (32 < v/wh < 96) and Large (v/wh > 96) objects.
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Medium (32 < v/wh < 96) and Large (v/wh > 96) objects.

Performance analysis:
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Comparison with two existing methods:

- Feature Reweighting (FRW) [Kang et al., 2019].
- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023].

» Two aerial datasets DOTA and DIOR, and two natural datasets Pascal VOC and MS COCO.

DOTA DIOR Pascal VOC Ms coco
All s M L Al s M L All s M L All s M L
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Classes DANA 3638 [1433 1 4000 6464 3818 | 321 3491  60.99 5226 | 1005 2467 67.23 2475 | 1201 2940 37.95
XOSA 4100 | 17.84 4457 5446 4151 | 412 4069 5821 5394 1946 3486 66.14 25.03 1257 26.05 3855

Table 1: Performance comparison between XQSA, FRW, and DANA. mAPq 5 values are reported separately for base (top) and novel
(bottom) classes on DOTA, DIOR, Pascal VOC, and MS COCO with K = 10 shots. mAP values are reported for All, Small (vwh < 32),
Medium (32 < v/wh < 96) and Large (v/wh > 96) objects.

Performance analysis:

» XQSA largely improves the detection of small objects both for natural and aerial images in
the few-shot regime.
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Cross-Scale Query-Support Alignment (XQSA)

Comparison with two existing methods:

- Feature Reweighting (FRW) [Kang et al., 2019].
- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023].

» Two aerial datasets DOTA and DIOR, and two natural datasets Pascal VOC and MS COCO.

DOTA DIOR Pascal VOC Ms coco
All s M L Al s M L All s M L All s M L

Base FRW  49.04 2548 5917 6337 6220 821 4866 80.67 6321 1567 47.94 8173 2903  13.08 3587  48.00
Classes DPANA 5398 3700 6227 7032 6271 1092 4934 8317 6517 1814 5058 80.11 3814 2330 5185 5638
X0SA 5111 2610 5941 6430 59.88  10.64 4569 8234 6213 1560 4864 7594 3156 1613 4013  49.83

Novel FRW 3729 1399 3411 | 5931 3629 248 3374 | 59.38 4872 1644 2671 | 6827 2409 1153 2245 | 38.69
Classes DANA 3638 1433 40.00 | 64Gh 3818 321 3491  60.99 5226 1005 2467 & 67.23 2475 1201 29.40 & 37.95
XOSA 4100 17.84 4457 | 5446 4151 412 40.69 | 5821 5394 1946 3486  66.14 25.03 1257 26.05 3855

Table 1: Performance comparison between XQSA, FRW, and DANA. mAPq 5 values are reported separately for base (top) and novel
(bottom) classes on DOTA, DIOR, Pascal VOC, and MS COCO with K = 10 shots. mAP values are reported for All, Small (vwh < 32),
Medium (32 < v/wh < 96) and Large (v/wh > 96) objects.

Performance analysis:

> XQSA largely improves the detection of small objects both for natural and aerial images in
the few-shot regime.

» Improvements at the cost of slight performance drop on larger objects.
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Cross-Scale Query-Support Alignment (XQSA)

Comparison with two existing methods:

- Feature Reweighting (FRW) [Kang et al., 2019].
- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023].

» Two aerial datasets DOTA and DIOR, and two natural datasets Pascal VOC and MS COCO.

DOTA DIOR Pascal VOC Ms coco
All s M L Al s M L All s M L All s M L

Base FRW  49.04 2548 5917 6337 6220 821 4866 80.67 6321 1567 47.94 8173 2903  13.08 3587  48.00
Classes DPANA 5398 3700 6227 7032 6271 1092 4934 8317 6517 1814 5058 80.11 3814 2330 5185 5638
X0SA 5111 2610 5941 6430 59.88  10.64 4569 8234 6213 1560 4864 7594 3156 1613 4013  49.83

Novel FRW | 3729 1399 3411 5931 3629 248 3374 5938 4872 1644 2671 6827 2409 1153 2245 3869
Classes DANA [ 3638 1433 4000 646k 3818 321 3491  60.99 5226 1005 2467 67.23 2475 1201 2940 37.95
XOSA | 4100 17.84 4457 5446 4151 412 4069 5821 5394 1946 3486 66.14 2503 1257 26.05 3855

Table 1: Performance comparison between XQSA, FRW, and DANA. mAPq 5 values are reported separately for base (top) and novel
(bottom) classes on DOTA, DIOR, Pascal VOC, and MS COCO with K = 10 shots. mAP values are reported for All, Small (vwh < 32),
Medium (32 < v/wh < 96) and Large (v/wh > 96) objects.

Performance analysis:

> XQSA largely improves the detection of small objects both for natural and aerial images in
the few-shot regime.

» Improvements at the cost of slight performance drop on larger objects.

» Large overall improvements on aerial datasets.
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3.2 AFine-Tuning Approach with Few-Shot Diffusion Detector

DiffusionDet translates the detection task into a denoising problem:

N

. Generate random boxes.
2. Iteratively denoise the boxes to localize objects.

3. Classify objects inside the resulting boxes.

1[]: Leamable module t=0: Computation pathfort = 0 i Repeat IV times

V[ : Fixed module Computation path for ¢ > 0}
. ’ Detection Head

Image features

Self-Attention

Regression [
Branch |,

[
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Classification
Branch

~ Backbone

Instance
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]
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embedding

Figure 9: DiffusionDet principle.
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N

2. Iteratively denoise the boxes to localize objects.
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Figure 9: DiffusionDet principle.
Key properties of DiffusionDet:

- High performance on small objects in the regular setting.
- No prior on box generation (e.g. anchors boxes).
- Ability to increase the number of detections without retraining.
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3.2 AFine-Tuning Approach with Few-Shot Diffusion Detector

Few-Shot Diffusion Detector (FSDD): A Fine-Tuning strategy for DiffusionDet

Backbone Detection Head
J & I

Regression branch

Figure 10: Per-layer representation of the detection model. Grey layers are frozen.
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1. Train DiffusionDet in a regular manner on base classes.

2. Re-initialize the last classification according to the number of novel classes.
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4. Re-initialize optimizer and learning rate scheduler.
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3.2 AFine-Tuning Approach with Few-Shot Diffusion Detector

Experimental comparison with existing methods on DOTA, DIOR, Pascal VOC and MS COCO:

- Feature Reweighting (FRW) [Kang et al., 2019].

- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].

- Self-Adaptive Attention (SAA) [Z. Xiao et al., 2021]

- Prototypical Faster R-CNN (PFRCNN) [Le Jeune, Mokraoui, et al., 2021]
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023]
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- Feature Reweighting (FRW) [Kang et al., 2019].

- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].

- Self-Adaptive Attention (SAA) [Z. Xiao et al., 2021]

- Prototypical Faster R-CNN (PFRCNN) [Le Jeune, Mokraoui, et al., 2021]
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023]

DOTA DIOR Pascal VOC Ms coco
All S M L All S M L All S M L All S M L
FRW 3529 1399 3411 5931 3729 2.48 3374 59.38 4872 16.44 2671  68.27  24.09 1153 2245  38.69
DANA 36.50 1432 40.28 64.65 38.18 321 3491 6099 5226 1005 2467 67.23 2475 12.01 29.40 37.95
35.12 ° = - 3238 - - - 5170 - - - 21.42 - - -
11.55 - - 9.16 - - - - - -

XQ: 4100 17.84 4457 5446  41.51 4.12 40.69 5821 5394 1946 3486 66.14 2503 1257 26.05 38.55
FSDiffusionDet  57.93 4599 6133 5325 55.80 1466 5414 7282 5580 1505 30.20 69.64 24.03 5.17 19.23  38.62

Table 2: Novel classes performance of FSDiffusionDet on DOTA, DIOR, Pascal VOC and MS COCO datasets. The models employed to
produce this figure have been finetuned with K = 10 shots.
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Table 2: Novel classes performance of FSDiffusionDet on DOTA, DIOR, Pascal VOC and MS COCO datasets. The models employed to
produce this figure have been finetuned with K = 10 shots.

» Impressive overall performance
on aerial images.
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- Feature Reweighting (FRW) [Kang et al., 2019].

- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].

- Self-Adaptive Attention (SAA) [Z. Xiao et al., 2021]

- Prototypical Faster R-CNN (PFRCNN) [Le Jeune, Mokraoui, et al., 2021]
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023]

DOTA DIOR Pascal VOC MS cOco
Al s M L All s M L All s M L All s M L
FRW 3529 [ 1399 3411 5931 3729 | 248 | 3374 5938 4872 1644 2671 6827 2409 1153 2245 3869
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FSDiffusionDet  57.93 | 4599 6133 5325 55.80 1466 5414 7282 5580 1505 3020 69.64 24.03 5.17 19.23  38.62

Table 2: Novel classes performance of FSDiffusionDet on DOTA, DIOR, Pascal VOC and MS COCO datasets. The models employed to
produce this figure have been finetuned with K = 10 shots.

» Impressive overall performance
on aerial images.

» Large improvement on small
object on aerial images.
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Experimental comparison with existing methods on DOTA, DIOR, Pascal VOC and MS COCO:

- Feature Reweighting (FRW) [Kang et al., 2019].

- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].

- Self-Adaptive Attention (SAA) [Z. Xiao et al., 2021]

- Prototypical Faster R-CNN (PFRCNN) [Le Jeune, Mokraoui, et al., 2021]
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023]

DOTA DIOR Pascal VOC MS COCO
All s M L All s M L All s M L All s M L
FRW 3529 13.99 3411 5931 3729 248 3374 59.38 4872 1644 2671 6827 2409 1153 2245 3869
DANA 3650 1432 4028 6465 3818 321 3491 6099 5226 1005 2467 6723 2475 1201 29.40 37.95
SAA 35.12 - - - 3238 - - - 5170 - - - 21.42 - - -
PFRCNN 1155 - - - 9.16 - - - - - - - - - - -
XQSA 4100 17.84 4457 5446 4151 412 4069 5821 5394 1946 3486 66.14 2503 1257 2605 3855

FSDiffusionDet  57.93 4599 6133 5325 55.80 1466 5414 7282 5580 1505 30.20 69.64 24.03 5.17 19.23  38.62

Table 2: Novel classes performance of FSDiffusionDet on DOTA, DIOR, Pascal VOC and MS COCO datasets. The models employed to
produce this figure have been finetuned with K = 10 shots.

» Impressive overall performance boTA DIOR Pascal VoC S coco
on aerial image& Method Base Novel Base Novel Base Novel Base Novel
FRW 4904 3529 | 6130 3729 | 6321 4872 | 2903 | 24.09
> Large improvement on small a Bl Bl Bl B
object on aerial images. PFRCNN 3632 1155 [4237 9.16 E = E °
XQs 5111 4100 | 59.88 4151 | 6213 5394 | 3156 2503

FsDiffusionDet | 6958  57.93 | 8171 5580 7463 5580 5191  24.03

» Base classes performance is
much higher.

Table 3: FSDiffusionDet baseline compared with other FSOD methods. mAP is
reported with a 0.5 loU threshold and K = 10 shots.

PhD Defense - Pierre LE JEUNE 19




3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

loU is a box similarity criterion.

Key component of all detection frameworks: leveraged as , for ,
, and
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

Definition and properties of Intersection over Union
loU is a box similarity criterion.

Key component of all detection frameworks: leveraged as loss function, for example selection,
NMS, and model evaluation.

Ground truth label Intersection

D Predicted label
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

Definition and properties of Intersection over Union
loU is a box similarity criterion.

Key component of all detection frameworks: leveraged as loss function, for example selection,
NMS, and model evaluation.

» loU is scale-invariant

» Scale-invariance is problematic for small objects as detectors do not have this property.

Ground truth label EI Intersection

D Predicted label D Union
oU(C3,00) _%
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

loU is a box similarity criterion.

Key component of all detection frameworks: leveraged as , for
, and

» loU is scale-invariant
» Scale-invariance is problematic for small objects as detectors do not have this property.

» Small prediction shift can have a large influence on the loU with ground truth: problematic
for training and evaluation.

Ground truth label Intersection

D Predicted label D Union
LU0 ==

1oU(F, ) = 0.798
10U, B = 0.782
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

loU is a box similarity criterion.

Key component of all detection frameworks: leveraged as , for
, and

» loU is scale-invariant
» Scale-invariance is problematic for small objects as detectors do not have this property.

» Small prediction shift can have a large influence on the loU with ground truth: problematic
for training and evaluation.

Ground truth label Intersection

D Predicted label D Union
LU0 ==

U], E) = 0.747 1 6%
1oU(("L L) = 0.592424%
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

va

SloU(bs, by) = loU(b1, by)P  withp =1—~ve™ = (6)

where a is the mean area of the two boxes by and b, (a =
v € [-oo,1] and x € R’ are hyper-parameters to control SloU’s behavior.

wqhq+wyhy )
— )

by = (x1,y1, w1, h1) and by = (X2, 2, wa, hy).
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

Scale-Adaptive Intersection over Union (SloU) [Le Jeune et al., 2023]
Va
SloU(br, bz) = loU(b1, b)°  withp —1— ve~ % (6)

where a is the mean area of the two boxes by and b, (a =
v € [-o0,1] and x € R’ are hyper-parameters to control SloU’s behavior.

wqhq+wyhy )
— )

by = (x1,y1, w1, h1) and by = (X2, y2, w2, hy).

0.8

Scale invariance of loU is relaxed in a
controllable manner.

14
>

SloUy = —5, k = 64
SloUy = —3, k = 64
SloUy = —1, k = 64
loU (v = 0)

SloU v = 0.2, k = 64
SloU v = 0.5, k = 64
SloU v = 0.8, k = 64
SloU v = 0.8, k = 128

» ~ controls the direction of the
relaxation: criterion values are either
boosted or decreased.

Criterion values
=
IS

e

0.0

100

200 300 400 500
Object size (in pixel)

Figure 11: Illustration of the scale invariance relaxation of SloU.
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Scale-Adaptive Intersection over Union (SloU) [Le Jeune et al., 2023]

va

SloU(bs, by) = loU(bq,by)P  withp =1— ve™ = (6)
where a is the mean area of the two boxes b; and b, (a = M).
v € [-o0,1] and x € R’ are hyper-parameters to control SloU’s behavior.

b1 = (x1,y1, w1, h1) and by = (xz, y2, W, hy).

0.8
Scale invariance of loU is relaxed in a g
controllable manner. 205
> - Yo
P s
» ~ controls the direction of the 504
relaxation: criterion values are either :J:‘
boosted or decreased. 02 =T =0)
4— SloU v = 0.2, k = 64
—o— SloU vy = 0.5, k = 64
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Figure 11: Illustration of the scale invariance relaxation of SloU.
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Scale-Adaptive Intersection over Union (SloU) [Le Jeune et al., 2023]

va

SloU(bs, by) = loU(bq,by)P  withp =1— ve™ = (6)
where a is the mean area of the two boxes b; and b, (a = M).
v € [-o0,1] and x € R’ are hyper-parameters to control SloU’s behavior.

by = (x1,y1, w1, h1) and by = (X2, y2, w2, hy).

0.8
Scale invariance of loU is relaxed in a
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3.3 Scale-Adaptive loU for Trai

ing Few-Shot Detection Models

Scale-Adaptive Intersection over Union (SloU) [Le Jeune et al., 2023]

SlOU(b1, bz) = |0U(b1, bz)p

where a is the mean area of the two boxes by and b, (a =

. _a
withp=1—~e =

wqhq+wyhy )
— )

v € [-o0,1] and x € R’ are hyper-parameters to control SloU’s behavior.

by = (x1,y1, w1, h1) and by = (X2, y2, w2, hy).

Scale invariance of loU is relaxed in a
controllable manner.

» ~ controls the direction of the
relaxation: criterion values are either
boosted or decreased.

» k controls the speed at which loU’s
behavior is recovered.

tection in Aerial Images in Scarce Data Regime
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Scale-Adaptive Intersection over Union (SloU) [Le Jeune et al., 2023]

va

SloU(bs, by) = loU(b1, by)P  withp =1—~ve™ = (6)
where a is the mean area of the two boxes b; and b, (a = M).
v € [-oo,1] and x € R’ are hyper-parameters to control SloU’s behavior.
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

loU and SloU as loss functions.

loU Loss:

Lioy(b;, b)) = 1—loU(b;, b;),  (7)
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

SloU(by, by) = loU(bq, by)P,

) Va
loU and SloU as loss functions. withp =
loU Loss: SloU Loss:
Liou(b;, b;) =1—loU(b;, b)),  (7) Lsiou(b;, b) = 1— Slou(b;, b;). (8)
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

loU and SloU as loss functions.

loU Loss: SloU Loss:

Liou(bi, bj) =1—10U(b;, b)),  (7) Lsiou(b;, bj) = 1— SloU(b;, b;). (8)

Both loss functions can be extended to output negative values when boxes do not overlap,
following Generalized loU [Rezatofighi et al., 2019].
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loU and SloU as loss functions.
loU Loss: SloU Loss:

Liou(bi, bj) =1—10U(b;, b)),  (7) Lsiou(b;, bj) = 1— SloU(b;, b;). (8)

Both loss functions can be extended to output negative values when boxes do not overlap,
following Generalized loU [Rezatofighi et al., 2019].

SloU loss can control the training balance between small and large objects.
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Both loss functions can be extended to output negative values when boxes do not overlap,
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following Generalized loU [Rezatofighi et al., 2019].
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

loU and SloU as loss functions.

loU Loss: SloU Loss:

Liou(bi, bj) =1—10U(b;, b)),  (7) Lsiou(b;, bj) = 1— SloU(b;, b;). (8)

Both loss functions can be extended to output negative values when boxes do not overlap,
following Generalized loU [Rezatofighi et al., 2019].

SloU loss can control the training balance between small and large objects.

» With v <0, S|OU(5,', b,) < |0U(5,‘, b,'), hence Lsmu(ﬁ,’, b,) > LIuU(Ei, b,)
» Small objects have more influence on the overall loss.

» Training is then biased to improve the localization of small targets.
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3.3 Scale-Adaptive loU for Training Few-Shot Detection Models

SloU(by, by) = loU(b

loU and SloU as loss functions. with p
loU Loss: SloU Loss:
Liou(bi, bj) =1—10U(b;, b)),  (7) Lsiou(bj, bj) = 1— Slou(b;, b;). (®)

Both loss functions can be extended to output negative values when boxes do not overlap,
following Generalized loU [Rezatofighi et al., 2019].

SloU loss can control the training balance between small and large objects.

» With v <0, S|OU(£,', b,) < |0U(5,‘, b,'), hence L‘,smu(ﬁ,’, b,) > LIuU(Ei, b,)
» Small objects have more influence on the overall loss.

» Training is then biased to improve the localization of small targets.

With v > 0, SloU becomes more suitable than loU for model evaluation as it aligns better with
human perception (shown with a user study).
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Scale-Adaptive loU for Training Few-Shot Detection Models

Comparison with existing criteria on DOTA:
- loU and GloU [Rezatofighi et al., 2019]
- a-loU [He et al., 2021]
- Normalized Wasserstein Distance (NWD) [C. Xu et al., 2022]
- Scale-Adaptive Intersection over Union (SloU) [Le Jeune et al., 2023]

Base classes Novel Classes
XQSA All s M L All s M L
Base classes Novel Classes

Loss All s M All s M pora W/ GloU 5241 2694 6117 6300 4103 2401 5213  69.78
w/GsloU 5291 2214 6119  66.02 4588 3483 5126 7078

loU 5067 2583 57.49 6824 3241 1006 47.87  67.09
a-loU 4672 1324 5521  69.94 3395 1258 4658 7450 pior W/ GloU 5890 1038 4076 8044 4793 985 4761  68.40
SloU 5362 2407 6191 67.34 39.05 1659 5442 7449 w/GSloU 6029 1128 4324 8163 5285 1378 5373 7122
NWD 5079 19.19 5890  67.90 4165 2826  50.16 6506 pascal W/ GloU 5109 1393 4026 6201 4842 1844 3606  59.99
Gl 2 L 26,0 N L1 762,00 G AR EE @R w/GSloU 5447 1388 4013  66.82 5516 2294 36.24  67.40

GSloU 5291 2214 6119  66.02 4588 3483 5126 7078
coco  W/GloU 1915 872 2250 3059 2625 1196 2395 3860
w/GSloU 1957 841 2302 3107 2711 1281 2602 3920

Table 4: Few-shot performance comparison between several
criteria: loU, a-loU, SloU, NWD, GloU, and GSloU trained on

DOTA. mAP is reported with a 0.5 loU threshold for small (S),
medium (M), large (L), and all objects. K = 10 shots.

Table 5: Few-shot performance on four datasets: DOTA, DIOR, Pascal VOC
and COCO. GloU and GSloU losses are compared. mAP is reported with a 0.5
loU threshold and for all object sizes. K = 10 shots.
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Scale-Adaptive loU for Training Few-Shot Detection Models

Comparison with existing criteria on DOTA:
- loU and GloU [Rezatofighi et al., 2019]
- a-loU [He et al., 2021]
- Normalized Wasserstein Distance (NWD) [C. Xu et al., 2022]
- Scale-Adaptive Intersection over Union (SloU) [Le Jeune et al., 2023]

Base classes Novel Classes
XQSA All s M L All s M L
Base classes Novel Classes

Loss All s M All s M pora W/ GloU 5241 2694 6117 6300 4103 2401 5213  69.78
w/GsloU 5291 2214 6119  66.02 4588 3483 5126 7078

loU 5067 2583 57.49 6824 3241 1006 47.87  67.09
a-loU 4672 1324 5521  69.94 3395 1258 4658 7450 pior W/ GloU 5890 1038 4076 8044 4793 985 4761  68.40
SioU 5362 2407 6191 67.34 3905 1659 5442 7449 w/GSloU 6029 1128 4324 8163 5285 1378 5373 7122
NWD 5079 1919 5890 67.90 4165 2826 5016  65.06 pascal W/ GOU 5109 1393 4026 6201 4842 1844 3606  59.99
Glou 5241 2694 6117 63.00 4103 24.01 5213 69.78 w/ GSloU 5447 1388 4013  66.82 5516 2294 3624  67.40

GSloU 5291 2214 6119 66.02 4588 3483 5126 7078
coco  W/GloU 1915 872 2250 3059 2625 1196 2395 3860
w/GSloU 1957 841 2302 3107 2711 1281 2602 3920

Table 4: Few-shot performance comparison between several
criteria: loU, a-loU, SloU, NWD, GloU, and GSloU trained on

DOTA. mAP is reported with a 0.5 loU threshold for small (S),
medium (M), large (L), and all objects. K = 10 shots.

Table 5: Few-shot performance on four datasets: DOTA, DIOR, Pascal VOC
and COCO. GloU and GSloU losses are compared. mAP is reported with a 0.5
loU threshold and for all object sizes. K = 10 shots.

» SloU and GSloU losses dominate other critera.
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Comparison with existing criteria on DOTA:
- loU and GloU [Rezatofighi et al., 2019]
- a-loU [He et al., 2021]
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Table 4: Few-shot performance comparison between several
criteria: loU, a-loU, SloU, NWD, GloU, and GSloU trained on

DOTA. mAP is reported with a 0.5 loU threshold for small (S),
medium (M), large (L), and all objects. K = 10 shots.

Table 5: Few-shot performance on four datasets: DOTA, DIOR, Pascal VOC
and COCO. GloU and GSloU losses are compared. mAP is reported with a 0.5
loU threshold and for all object sizes. K = 10 shots.

» SloU and GSloU losses dominate other critera.

» SloU and GSloU brings large improvements for small object detection.
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Table 4: Few-shot performance comparison between several
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DOTA. mAP is reported with a 0.5 loU threshold for small (S),
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Table 5: Few-shot performance on four datasets: DOTA, DIOR, Pascal VOC
and COCO. GloU and GSloU losses are compared. mAP is reported with a 0.5
loU threshold and for all object sizes. K = 10 shots.

» SloU and GSloU losses dominate other critera.

» SloU and GSloU brings large improvements for small object detection.

» For aerial images, it induces large overall detection performance gains.
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3.4 Key Takeaways

Three contributions for small object detection in the few-shot regime
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Three contributions for small object detection in the few-shot regime

Cross-Scale Query-Support Alignment (XQSA), an attention mechanism for small FSOD.

» XQSA largely improves the detection performance of small objects in the few-shot regime.

o Very helpful for aerial images.

"® Improvements on small targets at the cost of larger objects, more polyvalent attention
mechanisms should be developed.
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Few-Shot DiffusiontDet a fine-tuning-based approach for small FSOD.
b Substantial improvements on FSOD for aerial images with large gains on small objects with
learnable box prior.
8 Much easier to train and scales better with the number of shots.
“® Find a way to predict how much freezing will be optimal for a dataset.
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» XQSA largely improves the detection performance of small objects in the few-shot regime.
o Very helpful for aerial images.
"® Improvements on small targets at the cost of larger objects, more polyvalent attention
mechanisms should be developed.

@ Few-Shot DiffusiontDet a fine-tuning-based approach for small FSOD.
b Substantial improvements on FSOD for aerial images with large gains on small objects with
learnable box prior.
8 Much easier to train and scales better with the number of shots.
“® Find a way to predict how much freezing will be optimal for a dataset.

Scaled-Adaptative Intersection over Union (SloU) is a controllable relaxation of loU.
% Largely improves small object detection in the few-shot regime by shifting the training
balance between small and large objects.
ol Better aligned with human perception and well-suited for model evaluation.
P Limited gains in regular settings and with DiffusionDet.
® Requires the tuning of v and k.
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4, Addressing more Complex Scenarios

Promising performance of FSDiffusionDet allows envisioning Cross-Domain
applications

Diﬂ—‘e rences With FeW-ShOt O bject Detection. Source domain (natural images) Target domain (aerial images)

Domains
are
different

- Use two separate datasets between base training
and fine-tuning.

k images per class
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Target domain classes probability vector

Figure 12: Cross-Domain Few-Shot Object Detection (CD-FSOD).

Object Detection in Aerial Images in Scarce Data Regime PhD Defense - Pierre LE JEUNE 25



4, Addressing more Complex Scenarios

Promising performance of FSDiffusionDet allows envisioning Cross-Domain
applications

Source domain (natural images) Target domain (aerial images)

Differences with Few-Shot Object Detection:

- Use two separate datasets between base training
and fine-tuning.

Domains
are
different

k images per class

- Base classes are all classes of the source dataset. . 0 il i
ase vainingon ) @ Tanstronne
CD-FSOD Model
[ ]

| ==-sus]
Target domain classes probability vector

Figure 12: Cross-Domain Few-Shot Object Detection (CD-FSOD).

Object Detection in Aerial Images in Scarce Data Regime PhD Defense - Pierre LE JEUNE 25



4, Addressing more Complex Scenarios

Promising performance of FSDiffusionDet allows envisioning Cross-Domain
applications

Diﬂ—‘e rences With FeW-ShOt O bject Detection. Source domain (natural images) Target domain (aerial images)
Domains
diferent

- Use two separate datasets between base training
and fine-tuning.

k images per class

- Base classes are all classes of the source dataset. (@ B miign 0 ) @ rsemee
source domain g target domain
- Novel classes are all classes of the target dataset. v
[ ]

| ==-sus]
Target domain classes probability vector

Figure 12: Cross-Domain Few-Shot Object Detection (CD-FSOD).

Object Detection in Aerial Images in Scarce Data Regime PhD Defense - Pierre LE JEUNE 25



4, Addressing more Complex Scenarios

Promising performance of FSDiffusionDet allows envisioning Cross-Domain
applications

Diﬂ—‘e rences With FeW-ShOt O bject Detection. Source domain (natural images) Target domain (aerial images)

Domains
are
different

- Use two separate datasets between base training
and fine-tuning.

k images per class

- Base classes are all classes of the source dataset.

@ Pese waiing on L ] @ Tensteronthe
source domain U g target domain
- Novel classes are all classes of the target dataset.
- Target dataset only has K images for each class. )

| ==-sus]
Target domain classes probability vector

Figure 12: Cross-Domain Few-Shot Object Detection (CD-FSOD).

Object Detection in Aerial Images in Scarce Data Regime PhD Defense - Pierre LE JEUNE 25



4, Addressing more Complex Scenarios

Promising performance of FSDiffusionDet allows envisioning Cross-Domain
applications

Diﬂ—‘e rences With FeW-ShOt O bject Detection. Source domain (natural images) Target domain (aerial images)
Domains
diferent

- Use two separate datasets between base training
and fine-tuning.

- Base classes are all classes of the source dataset.

source doma g
- Novel classes are all classes of the target dataset. v
- Target dataset only has K images for each class. )

| ==-sus]
Target domain classes probability vector

Only interested in the detection performance on the novel

classes (,e the target classes). Figure 12: Cross-Domain Few-Shot Object Detection (CD-FSOD).

tection in Aerial Images in Scarce Data Regime PhD Defense - Pierre LE JEUNE 25




Addressing more Complex Scenarios

COCO —> Anything scenarios
Base training on COCO and fine-tuning on another dataset, experiment with DOTA [Xia et al.,

2018], DIOR [K. Li et al., 2020], DeepFruit, SIXRay [Miao et al., 2019], CipArt [Inoue et al., 2018],
VisDrone [Y. Sun et al., 2022].

- . = Novel Classes mAP
K Shots DIOR DOTA DeepFruits SIXRay ClipArt VisDrone DIOR
1 11.10 + 0.32 4.03 £ 0.26 38.47 + 1.42 4.80 + 0.87 2.09+0.19 2.83+0.17
5 30.42 £ 0.69 1445+ 043 5558+ 136 13.25+114 526+0.15 5.74+ 0.22
10 3873 £0.65 25.02+065 6837+201 21264133 569+ 0.10 7.50+ 0.10
20 4823 £033 3331+£046 7395+053 30.06+1.09 6.10+022 9.14£ 0.35
50 56.97 £ 0.60 4323 £0.68 76.65+078 41934102 6.44+£016 11474027

Table 6: Cross-domain performance results on 6 scenarios COCO — DIOR / DOTA /
DeepFruits / SIXRay / ClipArt / VisDrone. The average mAPq g is reported with a 95%
confidence interval.

“SiXRay
—o— 1shot 4~ Sshots  —o— 10 shots
—o— 20shots  —&— 50 shots

Figure 13: Performance of FSDiffusionDet on
multiple COCO —> X scenarios.

26



Addressing more Complex Scenarios

COCO —> Anything scenarios
Base training on COCO and fine-tuning on another dataset, experiment with DOTA [Xia et al.,

2018], DIOR [K. Li et al., 2020], DeepFruit, SIXRay [Miao et al., 2019], CipArt [Inoue et al., 2018],
VisDrone [Y. Sun et al., 2022].

- . = Novel Classes mAP
K Shots DIOR DOTA DeepFruits SIXRay ClipArt VisDrone DIOR
1 11.10 + 0.32 4.03 £ 0.26 38.47 + 1.42 4.80 + 0.87 2.09+0.19 2.83+0.17
5 30.42 £ 0.69 1445+ 043 5558+ 136 13.25+114 526+0.15 5.74+ 0.22
10 3873 £0.65 25.02+065 6837+201 21264133 569+ 0.10 7.50+ 0.10

20 4823 £033 3331+£046 7395+053 30.06+1.09 6.10+ 022 9.14£ 0.35
50 56.97 £ 0.60 4323 £0.68 76.65£0.78 4193 £1.02 6.44+016 11.47+027

Table 6: Cross-domain performance results on 6 scenarios COCO — DIOR / DOTA /
DeepFruits / SIXRay / ClipArt / VisDrone. The average mAPq g is reported with a 95%
confidence interval.

» As in classical Few-Shot setting, performance improves
with K. Promising performance with a reasonable amount

: ’ sixRay
of annotations. —o— 1 shot 94— 5 shots —o— 10 shots.
—v— 20 shots —a— 50 shots

Figure 13: Performance of FSDiffusionDet on
multiple COCO — X scenarios.

26



Addressing more Complex Scenarios

COCO —> Anything scenarios

Base training on COCO and fine-tuning on another dataset, experiment with DOTA [Xia et al.,
2018], DIOR [K. Li et al., 2020], DeepFruit, SIXRay [Miao et al., 2019], CipArt [Inoue et al., 2018],
VisDrone [Y. Sun et al., 2022].

- . = Novel Classes mAP
K Shots DIOR DOTA DeepFruits SIXRay ClipArt VisDrone DIOR
1 11.10 + 0.32 4.03 £ 0.26 38.47 + 1.42 4.80 + 0.87 2.09+0.19 2.83+0.17
5 30.42 £ 0.69 1445+ 043 5558+ 136 13.25+114 526+0.15 5.74+ 0.22
10 3873 £ 065 2502 +£065 6837+201 21264133 569+ 0.10 7.50+ 0.10
20 4823 £033 3331+£046 7395+053 30.06+1.09 6.10+022 9.14£ 0.35
50 56.97 £ 0.60 43.23 £0.68 76.65+£0.78 4193 £1.02 6.44£0.16 1147+ 027

Table 6: Cross-domain performance results on 6 scenarios COCO — DIOR / DOTA /
DeepFruits / SIXRay / ClipArt / VisDrone. The average mAPq g is reported with a 95%
confidence interval.

» As in classical Few-Shot setting, performance improves
with K. Promising performance with a reasonable amount

f tati s
OoT annotations. —o— 1 shot 4~ 5shots  —o— 10 shots
—v— 20shots —— 50 shots

» With K = 10, reduced performance for DOTA and DIOR,
more difficult task (more classes)

Figure 13: Performance of FSDiffusionDet on
multiple COCO — X scenarios.

26



Addressing more Complex Scenarios

COCO —> Anything scenarios

Base training on COCO and fine-tuning on another dataset, experiment with DOTA [Xia et al.,
2018], DIOR [K. Li et al., 2020], DeepFruit, SIXRay [Miao et al., 2019], CipArt [Inoue et al., 2018],
VisDrone [Y. Sun et al., 2022].

- . = Novel Classes mAP
K Shots DIOR DOTA DeepFruits SIXRay ClipArt VisDrone DIOR
1 11.10 + 0.32 4.03 £ 0.26 38.47 + 1.42 4.80 + 0.87 2.09+0.19 2.83+0.17 - -
5 30.42 £ 069 1445+ 043 5558+ 136 13.25+114 = 526+ 0.15 5.74+ 0.22

10 3873 £0.65 25.02+065 6837+201 21264133 569+ 0.10 7.50+ 0.10
20 4823 £033 3331+£046 73.95+053 30.06+1.09 6.10+£022 9.14+ 0.35
50 56.97 £ 0.60 43.23 £0.68 76.65+£0.78 4193 £1.02 | 6.44£016 1147+ 027

\
\

20 “
40 /

60

Table 6: Cross-domain performance results on 6 scenarios COCO — DIOR / DOTA /
DeepFruits / SIXRay / ClipArt / VisDrone. The average mAPq g is reported with a 95%
confidence interval.

0

pArt
» As in classical Few-Shot setting, performance improves
with K. Promising performance with a reasonable amount i
. SIXRay
Of annc’tatlons' —o— 1 shot ¢~ 5 shots —o— 10 shots

—v— 20shots —&— 50 shots

» With K = 10, reduced performance for DOTA and DIOR,

more difficult task (more classes) Figure 13: Performance of FSDiffusionDet on

multiple COCO — X scenarios.

» Difficulties with some datasets, probably because of poor
annotation quality.
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4, Addressing more Complex Scenarios

Aerial Cross-Domain scenarios
Base training on DOTA and fine-tune on DIOR, and vice-versa.

DIOR —» DOTA DOTA -+ DIOR
Backbone frozen Fully fine-tuned Backbone frozen Fully fine-tuned
Kshots  All s M L All s M L Kshots Al s M L AL s M L

1 541 272 628 451 509 308 672 407 1 2018 553 1696 23.43 940 386 915 895
5 2588 1699 3147 2250 2490 1585 29.67 2227 5 3643 999 3112 47.03 2957 870 2580 3576
10 3199 1764 3690 3123 3330 1597 3713 3245 10 4148 1285 3662 53.85 3844 1050 3258 4727
20 3877 2168 4649 3479 4130 2197 4590 4108 20 49.00 1639 4023 6279 4536 1529 3651 55.05
50 4407 2922 5266 4100 4922 2941 5594  52.82 50 5407 1870 4383 67.58 5351 1949 4127  63.04

Table 7: FSDiffusionDet Cross-domain results on the scenario Table 8: FSDiffusionDet Cross-domain results on the scenario

DIOR — DOTA. DOTA — DIOR.
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Aerial Cross-Domain scenarios
Base training on DOTA and fine-tune on DIOR, and vice-versa.

DIOR —» DOTA
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Table 7: FSDiffusionDet Cross-domain results on the scenario Table 8: FSDiffusionDet Cross-domain results on the scenario

DIOR — DOTA. DOTA — DIOR.

» Higher performance than with COCO as source, promising for COSE’s applications.
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» Higher performance than with COCO as source, promising for COSE’s applications.

» Different freezing sweet spot for DOTA — DIOR and DIOR — DOTA.
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4, Addressing more Complex Scenarios

Aerial Cross-Domain scenarios
Base training on DOTA and fine-tune on DIOR, and vice-versa.

DIOR —» DOTA DOTA -+ DIOR
Backbone frozen Fully fine-tuned Backbone frozen Fully fine-tuned
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50 4407 2922 5266 4100 4922 2941 5594  52.82 50 5407 1870 4383 67.58 5351 1949 4127  63.04

Table 7: FSDiffusionDet Cross-domain results on the scenario Table 8: FSDiffusionDet Cross-domain results on the scenario

DIOR — DOTA. DOTA — DIOR.

» Higher performance than with COCO as source, promising for COSE’s applications.
» Different freezing sweet spot for DOTA — DIOR and DIOR — DOTA.

» Need for fine-tuning sweet spot estimation tools, e.g. a dataset/domain distance measure:

> Intuition: compatible domains require less plasticity and fine-tuning.
> Take domain shift into account.

> Relationship between base/source and novel/target classes (intra and inter-class variance).
> Work in progress...
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5. Conclusion and Perspectives

Summary of this presentation

- Investigation of FSOD challenge with aerial Images:
» Small objects are more numerous in aerial images, poor examples in few-shot.

- Improvements of small object detection with Attention-based and Fine-tuning approaches:

» XQSA significantly improves small object detection.
» FSDiffusionDet outperforms all methods on aerial images and promising results in the
Cross-Domain scenarios.
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5. Conclusion and Perspectives

Summary of this presentation

- Investigation of FSOD challenge with aerial Images:
» Small objects are more numerous in aerial images, poor examples in few-shot.

- Improvements of small object detection with Attention-based and Fine-tuning approaches:
» XQSA significantly improves small object detection.

» FSDiffusionDet outperforms all methods on aerial images and promising results in the
Cross-Domain scenarios.

XQSA FSDiffusionDet

& Adaptability to new classes «&  Simple and quicker training
& Verylow-shot performance «%  Shot scalability

i®  Complex training scheme "®  Fine-tuning mandatory

i®  Inference speed o  Cross-domain performance

- Carefully designed loss function can improve small object detection:

» SloU loss allows precise control of the training balance between small and large objects.
» SloU increase detection performance and helps for model evaluation.
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Research perpectives

- Attention-based approaches

» Design more versatile attention mechanisms for small and large objects.
» Reduce memory footprint of attention modules to speed up training and improve scalability.
» Develop fine-tuning-free approaches (possible but poor results so far).
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Research perpectives

- Attention-based approaches

» Design more versatile attention mechanisms for small and large objects.
» Reduce memory footprint of attention modules to speed up training and improve scalability.
» Develop fine-tuning-free approaches (possible but poor results so far).

- Fine-tuning approaches
» Develop predictive tools to find optimal plasticity (including theoretical groundings):
> Find a measure of difficulty for a given scenario, ideally few-shot compatible.
> Understand the need for plasticity and how it should be distributed within the models.

» Find a way to adapt the models without fine-tuning:
> Propose transductive approaches for object detection.
> Require solving regression in a transductive manner (e.g. Transductive Ridge
Regression [Cortes et al., 2006]).
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» Develop predictive tools to find optimal plasticity (including theoretical groundings):
> Find a measure of difficulty for a given scenario, ideally few-shot compatible.
> Understand the need for plasticity and how it should be distributed within the models.

» Find a way to adapt the models without fine-tuning:
> Propose transductive approaches for object detection.
> Require solving regression in a transductive manner (e.g. Transductive Ridge
Regression [Cortes et al., 2006]).

- Scaled-adaptive Intersection over Union

» Understand in depth the training balance between small and large objects.
» Investigate its influence on other components of the detection frameworks (e.g. NMS and
example selection).
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- Optimization and deployment of Few-Shot detection models:
» Few-Shot Detection originally planned as a ground processing, i.e. with much looser

constraints.
» Few-Shot models are much more challenging to optimize/quantize, existing tools

do not support custom layers.
» Quantization and model size reduction reduce performance, not suitable for

Few-Shot models.
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- Focus on CD-FSOD as closest from COSE Applications.

- Optimization and deployment of Few-Shot detection models:
» Few-Shot Detection originally planned as a ground processing, i.e. with much looser
constraints.
» Few-Shot models are much more challenging to optimize/quantize, existing tools
do not support custom layers.
» Quantization and model size reduction reduce performance, not suitable for
Few-Shot models.

- Automate fine-tuning and deployment pipeline for regular and Few-Shot Detection models.

< First flights in the following months: plenty of opportunity for further testing and refinements!
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A. Influence of Object Size on Few-Shot Performance

Detection of small objects is much more difficult in the few-shot regime.
Performance increases with object size.
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Figure 14: Per-class detection performance against object size, split by dataset.
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B. Scale-Adaptive Intersection over Union - User Study
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B. Scale-Adaptive Intersection over Union - User Study
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C. Criteria Distributions Analysis
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D. Additional Results for SloU

Influence of v and ~ on the performance.

Base classes Novel Classes
S A s M L Al s M L Base classes Novel Classes
05 4709 2129 5467 6548 3050 883 4497 6589 . Al s M L Al s M L
025 4594 2160 5439 6340 3096 1253 4237 6414 4 5165 2150 5976 6585 4298 3033 4857 7341
0 5241 2694 6117 6300 4103 2401 5213 6978 8 5270 2196 6149 6643 4416 3135 5070 7199
05 5280 2716 6119 6461 4106 2520 50.18 7204 16 5406 2368 6269 6662 4367 3004 5169  69.66
-1 5303 2320 6153 6668 4277 2755 5201 7076 32 5388 2233 6300 6735 3736 2365 4460 6629
2 5406 2368 6269 6662 4367 3004 5169 6966 64 5282 2179 6146 6677 4368 2943 5247  69.46
3 5291 2214 6119 6602 4588 3483 5126 7078 198 5342 2173 6290 6675 4132 2685 4940 7038

-4 53.59 2250 6248 66.18 4243 2756 5179 68.70
-9 5311 2098 6213 67.00 4263 3053 48.89 68.62

Table 10: Evolution of the few-shot performance (XQSA with GSloU

Table 9: Evolution of the few-shot performance (XQSA with GSloU loss) for various values of r (y = —2is fixed).

loss) on DOTA for various values of v (x = 16 is fixed). mAP is
reported with a 0.5 loU threshold and for all object sizes.



D. Additional Results for SloU

SloU is beneficial with multiple attention-based
FSOD methods.

Base classes Novel Classes
XasA Al s M L All s M L
fRw W/ GloU 3460 1615 4861  59.00 3200 1529 4450 5477
w/GSloU 3036 1194 4430 5487 3294 1669 4287 6264
pana  W/GloU 4809 2736 6606  68.00 4449 3010 5224 7440
w/GSloU 5010 3219 6546 6777 4140 2107 5480 7523
xasa W/ GloU 4530 2694 6117 6300 4103 2601 5213 6978
w/GSloU 4342 2214 6119  66.02 4588 3483 5126 7078

Table 11: Performance comparison with three different FSOD
methods: Feature Reweighting Kang et al. 2019 (FRW), Dual
Awareness Attention T.-I. Chen et al. 2021 (DANA) and our
Cross-scale Query-Support Alignment (XQSA), trained with GloU and
GSloU. mAP is reported with a 0.5 loU threshold for small (S),
medium (M), large (L) and all objects.

SloU’s influence on Regular Detection.

DOTA DIOR
FCos All 8 m L Al S M L
w/ Glou 349 174 366 433 481 101 403 63.2
w/GSloU 368 175 404 452 492 110 412 661

Table 12: Regular Object Detection performance on DOTA and DIOR
datasets with GloU and GSloU (v = —3 and x = 16) losses. mAP is
computed with several loU thresholds (0.5 to 0.95) as it is commonly
done in regular detection.



D. Additional Results for SloU

Evaluation with SloU as the evaluation threshold.

Base classes Novel Classes
Loss Al L Al L
Base classes. Novel Classes
loU 5581 3503 6257 70.05 3910 1858 5393 6883 Xesa AL S ) L Al " L

a-loU 5305 2060 6105 7241 4193 2099 5574 7679 o WGoU 927 wer eoa1 Gk R 5 B D
Slou 5977 3638 67.29 70.06 4951 3106 6253 77.24 w/GSloU 5932 3532 6629 69.03 57.70 4677 6556  73.67
NWD 5880 3416 6681 7005 5366 4202 6253 6892 bog W/ GOU 6206 1749 4555 8222 5381 2379 5346 7163
GloU 5927 4407 6691 6546 49.02 3510 57.58 7430 w/GSloU 6381 17.77 49.62 8253 5879 2560 59.28 73.78
GSloU 5932 3532 6629 69.03 5770 4677 6556  73.67 sl W/ GOV 5551 2610 4682 6431 5243 2897 4073 6258
w/ GSloU 5874 2747 4656  68.93 5892 3136 4165 69.71
. w/ GloU 2146 1277 2479 3186 2921 1736 27.62  40.05
Table 13: Few-shot performance comparison between several €00 iesioU 2197 1280 2572 3235 2005 1887 2993 4047

criteria: loU, a-loU, SloU, NWD, GloU and GSloU trained on DOTA.
mAP is reported with a 0.5 SloU threshold for small (S), medium (M),

N Table 14: Few-shot performance on three datasets: DOTA, DIOR,
large (L), and all objects.

Pascal VOC and COCO. GloU and GSloU losses are compared. mAP is
reported with a 0.5 SloU threshold and for various object sizes.



E. Additional Results for Few-Shot Diffusion Detector

Finding the fine-tuning sweetspot

Freezing point Plasticityrate DOTA  DIOR  PascalVOC  MS COCO

FT whole 100.00 % 60.09 52.17 43.10 17.15
Up to stage 1 99.98 % 58.85 53.37 43.81 17.72
Up to stage 2 99.47 % 57.41 53.21 41.23 17.73
Up to stage 3 96.57 % 59.88 54.36 47.57 19.49
Up to stage &4 79.66 % 56.13 57.51 53.72 21.88
FT head only 35.97 % 51.82  55.70 51.72 19.96
FT last layer only 0.03 % 0.05 0.11 0.53 0.01
Bias only 3598 % 60.45 55.12 49.90 20.19
BatchNorm only 35.97 % 59.35 55.63 51.96 19.70

Table 15: Influence of the amount of plasticity on the FS performance on DOTA, DIOR, Pascal
VOC and MS COCO. mAP is reported with a 0.5 loU threshold, K = 10 shots.
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» For DOTA, the trend is reversed.
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Up to stage 1 99.98 % 58.85 53.37 43.81 17.72

Up to stage 2 99.47 % 57.41 53.21 41.23 17.73 Backbone Detection Head

Up to stage 3 96.57 % 59.88 54.36 47.57 19.49 —

Up to stage &4 79.66 % 56.13 57.51 53.72 21.88 ~l

FT head only 35.97 % 51.82  55.70 51.72 19.96 H]H o m]» ’ k

FT last layer only 0.03 % 0.05 0.11 0.53 0.01 \,UDD

Bias only 35.98 % 60.45 55.12 49.90 20.19 Regression branch
BatchNorm only 3597 % 59.35 55.63 51.96 19.70

Table 15: Influence of the amount of plasticity on the FS performance on DOTA, DIOR, Pascal
VOC and MS COCO. mAP is reported with a 0.5 loU threshold, K = 10 shots.

» Freezing the 4 first stages of the backbone is a sensible compromise.
» For DIOR, Pascal VOC and COCO, performance increases as plasticity decreases, up to stage 4.
» For DOTA, the trend is reversed.

» Fine-tuning some parameters in every layer produces impressive results with reduced plasticity.



E. Additional Results for Few-Shot Diffusion Detector

FSDiffusionDet scales much better than other techniques with the number of shots K.
However, lower performance in very low shot settings K < 5.

DOTA Pascal VOC

K DOTA DIOR Pascal VOC  MS COCO 101
1 4.19 27.17 22.24 7.43 30
2 9.83 40.31 31.98 12.45 "
3 27.61  43.54 29.52 15.75 10 ! T o 0
5 3900 4692 3808 19.33 ¢ shots [ shots
10 5205 5432 52.64 24.99 DIoR 0 MS Coco
20 62.79  60.24 59.26 28.76 0] .
30 67.32  65.28 64.19 31.19 w
50 7191 7121 67.81 34.64 |
100 7227 77.05 7131 38.77 el »1
T = 0
Table 16: Influence of the number of shots on the few-shot object 01 151
detection performance of FSDiffusionDet on DOTA, DIOR, Pascal VOC 201 0]
and MS COCO. Performance is reported with mAPg g.
- 10" 10" 10* 10" 10" 10°
K shots K shots

—o— FSDiffusionDet  —0— XQSA —o— FRW  —v— DANA  —&— WSAAN

Figure 18: Performance of FSDiffusionDet, XQSA, FRW, DANA and
WSAAN on DOTA, DIOR, Pascal VOC and MS COCO against the number
of shots. Performance is reported with mAPq 5.



E. Additional Results for Few-Shot Diffusion Detector

Influence of the pre-training of the backbone Influence of the number of proposals

Backbones DOTA DIOR Pascal VOC  MS COCO # of Proposals  DOTA DIOR  PascalVOC  MS COCO

Scratch 728 872 13.72 038 200 4157 52.92 52.86 23.24

ImageNet  52.05 5432 52.64 24.99 250 47.97  47.62 52.28 2261

DINO 46.84  55.88 54.58 23.94 300 5576  5L77 51.81 22.46

cLp 4036  51.61 49.81 19.83 350 D227 ao0 5063 2213

400 4649 49.98 50.55 20.04

450 5311  53.07 51.06 20.48

Table 17: Study of the influence of the backbone pre-training. 500 52.03 5531 5144 20.25

mAPg 5 is provided only for base classes, the blue and red colors to

distinguish between base and novel classes are no longer required. Table 18: Analysis of FSDiffusionDet performance (mAPq s) against

the number of proposals on DOTA, DIOR, Pascal VOC and MS COCO
datasets.



F. Prototypical Faster R-CNN
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Figure 19: Illustration of the architecture of Prototypical Faster R-CNN.
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Figure 20: Qualitative results with Prototypical Faster R



G. Qualitative Resultswith Attention-based meth
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Figure 21: Qualitative results with Attention-based methods on base Figure 22: Qualitative results with Attention-based methods on
classes. novel classes.
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Figure 23: Qualitative results with Attention-based methods on novel classes.
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