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1.1 Industrial Context and Objectives

Context of this PhD: CIFRE between COSE and L2TI.

- SMB from aeronautic and defense sector.

- Tier-1 supplier for French state.

COSE develops, among other products, aerial
surveillance systems.

Laboratoire de Traitement et Transport de
l’Information (L2TI – UR 3043).
Organized in two teams:

- Multimedia team

- Network team

Laboratoire Commun IRISER
Intelligence, ReconnaIssance et SurveillancE Réactive

ANR-21-LCV3-0004
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1.1 Industrial Context and Objectives

This PhD falls within the scope of the CAMELEON project: COSE’s next-gen airborne surveillance
system.

GEOspatial INTelligence (GEOINT)
Georeferenced pieces of information about human activity on earth.
Includes coordinates, date, and metadata.

Figure 1: Creation of GEOINT in CAMELEON

Figure 2: Global Scanner System,
to be replaced by CAMELEON.

PhD Objective: Automate the creation of GEOINT
I Localization of objects of interest in the images
I Recognition and classification of the objects.

Constraints:
- Images are extremely large.
- On-board resources are limited.
- Training sets are not available.

Object Detection in Aerial Images in Scarce Data Regime PhD Defense – Pierre LE JEUNE 3



1.1 Industrial Context and Objectives

This PhD falls within the scope of the CAMELEON project: COSE’s next-gen airborne surveillance
system.

GEOspatial INTelligence (GEOINT)
Georeferenced pieces of information about human activity on earth.
Includes coordinates, date, and metadata.

Figure 1: Creation of GEOINT in CAMELEON

Figure 2: Global Scanner System,
to be replaced by CAMELEON.

PhD Objective: Automate the creation of GEOINT
I Localization of objects of interest in the images
I Recognition and classification of the objects.

Constraints:
- Images are extremely large.
- On-board resources are limited.
- Training sets are not available.

Object Detection in Aerial Images in Scarce Data Regime PhD Defense – Pierre LE JEUNE 3



1.1 Industrial Context and Objectives

This PhD falls within the scope of the CAMELEON project: COSE’s next-gen airborne surveillance
system.

GEOspatial INTelligence (GEOINT)
Georeferenced pieces of information about human activity on earth.
Includes coordinates, date, and metadata.

Figure 1: Creation of GEOINT in CAMELEON

Figure 2: Global Scanner System,
to be replaced by CAMELEON.

PhD Objective: Automate the creation of GEOINT
I Localization of objects of interest in the images
I Recognition and classification of the objects.

Constraints:
- Images are extremely large.
- On-board resources are limited.
- Training sets are not available.

Object Detection in Aerial Images in Scarce Data Regime PhD Defense – Pierre LE JEUNE 3



1.2 Regular Object Detection Definition

Regular Object Detection

- Given a set of classes C, find all occurrences of objects belonging to any class c ∈ C
in an image I. Each object i is represented as a bounding box bi = (x, y,w, h, c).

- Large annotated dataset available.

Input image I

Object Detection in Aerial Images in Scarce Data Regime PhD Defense – Pierre LE JEUNE 4



1.2 Regular Object Detection Definition

Regular Object Detection

- Given a set of classes C, find all occurrences of objects belonging to any class c ∈ C
in an image I. Each object i is represented as a bounding box bi = (x, y,w, h, c).

- Large annotated dataset available.

Input image I

Object Detection in Aerial Images in Scarce Data Regime PhD Defense – Pierre LE JEUNE 4



1.2 Regular Object Detection Definition

Regular Object Detection

- Given a set of classes C, find all occurrences of objects belonging to any class c ∈ C
in an image I. Each object i is represented as a bounding box bi = (x, y,w, h, c).

- Large annotated dataset available.

Input image I

Object Detection in Aerial Images in Scarce Data Regime PhD Defense – Pierre LE JEUNE 4

C = {Baseball-diamond, Swimming-pool, Ground-track-field}



1.2 Regular Object Detection Definition

Regular Object Detection

- Given a set of classes C, find all occurrences of objects belonging to any class c ∈ C
in an image I. Each object i is represented as a bounding box bi = (x, y,w, h, c).

- Large annotated dataset available.

Input image I

Detection model

Object Detection in Aerial Images in Scarce Data Regime PhD Defense – Pierre LE JEUNE 4

→

C = {Baseball-diamond, Swimming-pool, Ground-track-field}



1.2 Regular Object Detection Definition

Regular Object Detection

- Given a set of classes C, find all occurrences of objects belonging to any class c ∈ C
in an image I. Each object i is represented as a bounding box bi = (x, y,w, h, c).

- Large annotated dataset available.

Input image I

Detection model

Detection results

Object Detection in Aerial Images in Scarce Data Regime PhD Defense – Pierre LE JEUNE 4

→ →

C = {Baseball-diamond, Swimming-pool, Ground-track-field}



1.3 Few-Shot Learning Principle
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1.4 Few-Shot Object Detection Definition

N-way K-shot object detection

- Given support examples {(I1, b1), . . . , (INK , bNK)} it consists in detecting all occurrences
of classes in C (|C| = N) in a query image Iq.

- Classes divided in two sets: base classes for which plenty of annotations are available,
and novel classes for which only K annotations are available per class.

Query image Iq
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1.5 Summary of the Contributions

1 Investigation of FSOD challenge with aerial Images:
I Small objects are more numerous in aerial images, poor examples in the few-shot regime.
I A first approach with metric learning: Prototypical Faster R-CNN.

2 Attention-based FSOD can successfully deal with small objects:
I Attention Alignment Fusion Framework to fairly compare Attention-based FSOD methods.
I Cross-Scale Query-Support Alignment for small object Detection.

3 Few-Shot DiffusionDet a Fine-tuning approach:
I FSDiffusionDet outperforms all methods on aerial images.
I Promising results in the challenging Cross-Domain scenarios.

4 Carefully designed loss functions can improve small object detection:
I Scale-adaptive Intersection over Union (SIoU) improves small object detection.
I SIoU loss allows precise control of the training balance between small and large objects.
I SIoU aligns better with human perception, improves model evaluation.
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2.1 Small Objects are Difficult to Detect

First contribution: Investigation of the performance gap between Aerial and Natural images in
FSOD

Figure 3: Few-Shot Detection performance compared on three distinct datasets.
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2.1 Small Objects are Difficult to Detect

Aerial images vs. Natural images

(a) DOTA (b) COCO
Figure 4: Examples images from two datasets.

Key specificities of aerial images:
- More and smaller objects
- Arbitrary rotations
- Densely packed objects

I Small objects are poor examples for the models and miscondition the detection.

I Few-Shot performance increases with object size, faster than in regular OD.

Object Detection in Aerial Images in Scarce Data Regime PhD Defense – Pierre LE JEUNE 9



2.2 More Complex Scenarios in Real Applications

FSOD setting assumes a few assumptions→ unrealistic for real application

Cross-Domain Few-Shot Object Detection
(CD-FSOD):

Figure 5: Cross-Domain Few-Shot Object Detection (CD-FSOD)
principle.
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2.2 More Complex Scenarios in Real Applications

FSOD setting assumes a few assumptions→ unrealistic for real application

CD-FSOD is of practical use for COSE:

- While real case images will be aerial
images, general aspects can change
drastically (weather conditions, seasons,
altitude, etc.).

- Classes are unknown before a mission, but
their number is limited.

- Can rely on extremely large datasets for
base training.

Increased difficulty: the model must adapt both
to novel classes and new kinds of images.

Cross-Domain Few-Shot Object Detection
(CD-FSOD):

Figure 5: Cross-Domain Few-Shot Object Detection (CD-FSOD)
principle.
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2.2 More Complex Scenarios in Real Applications

Key takeaways

- Increased difficulty of detecting small objects in the Few-Shot Regime.

- FSOD performance increases with object size, but the trend is stronger than in regular settings.

- G-FSOD and CD-FSOD are more realistic but more challenging scenarios than Few-Shot.

- CD-FSOD is of particular interest to COSE as it matches its applications.

Main research orientations of this Thesis:

I Improving the few-shot detection of small objects (section 3).

I Designing methods for Cross-Domain scenarios (section 4).
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3. Improving Small Object Detection in the Few-Shot Regime

Overview of the FSOD Literature – Fine-tuning vs. Attention-based approaches

Approach Abbreviation Venue Date Detection Framework Multiscale Datasets Aerial / Natural Images

FRW [Kang et al., 2019] ICCV 2019 YOLO No Pascal / COCO Natural
OSOD-CACE [Hsieh et al., 2019] NEURIPS 2019 Faster RCNN Yes Pascal / COCO Natural
Meta R-CNN [Yan et al., 2019] ICCV 2019 Faster RCNN No Pascal / COCO Natural
FSOD-RSI [X. Li et al., 2021] TGRS 2020 YOLO Yes DIOR / NWPU VHR Aerial
ARPN [Q. Fan et al., 2020] CVPR 2020 Faster RCNN Yes COCO Natural
VEOW [Y. Xiao et al., 2020] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural

KT [Kim et al., 2020] SMC 2020 Faster RCNN Yes Pascal Natural
OSOD-WFT [X. Li, L. Zhang, et al., 2020] Preprint 2020 FCOS Yes Pascal / COCO / ImageNet Loc Natural
ONCE [J.-M. Perez-Rua et al., 2020]‡ CVPR 2020 Center Net No Pascal / COCO / Deepfashion Natural

WSAAN [Z. Xiao et al., 2021] TAEORS 2021 Faster RCNN Yes RSOD / NWPU VHR Aerial
FSOD-FPDI [Yuxuan Gao et al., 2021] MDPI 2021 FCOS Yes DOTA / NWPU VHR Aerial

Meta-FRCNN [G. Han, S. Huang, et al., 2022] AAAI 2022 Faster RCNN Yes Pascal / COCO Natural
Meta-DETR [G. Zhang, Luo, et al., 2022] TPAMI 2021 DETR No Pascal / COCO Natural

DRL [W. Liu, H. Li, et al., 2021] Preprint 2021 Faster RCNN Yes Pascal / COCO Natural
DANA [T.-I. Chen et al., 2021] TM 2021 Faster RCNN Yes Pascal / COCO Natural

SP [H. Xu et al., 2021] Access 2021 Faster RCNN Yes Pascal / COCO Natural
JCACR [Chu et al., 2021] ICIP 2021 YOLO Yes Pascal / COCO Natural
TI-FSOD [A. Li et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
SAM [X. Huang et al., 2021] MDPI 2021 Faster RCNN No NWPU VHR-10 / DIOR Aerial

FSOD-FCT [G. Han, Ma, et al., 2022] CVPR 2022 Faster RCNN No Pascal / COCO Natural
SAR-DRM [Shiqi Chen et al., 2022] TGRS 2022 Faster RCNN No FUSAR-GEN Aerial
FSOD-PSI [Ouyang et al., 2022] JDT 2022 YOLO Yes Pascal / COCO Natural
SAFT [Y. Zhao et al., 2022] CVPR 2022 FCOS Yes Pascal / COCO Natural
APSP [H. Lee et al., 2022] WACV 2022 Faster RCNN No Pascal / COCO Natural

KFSOD [S. Zhang et al., 2022] CVPR 2022 Faster RCNN Yes Pascal / COCO Natural
FSODS [Zhou et al., 2022] TGRS 2022 YOLO Yes SMCDD-FS Aerial

TIN-FSOD [N. Liu et al., 2023] Arxiv 2023 Faster RCNN Yes NWPU VHR/ DIOR / HRRSD Aerial

Attention-based

FSOD-ICF [Jiang et al., 2023] WACV 2023 Faster RCNN Yes Pascal / COCO Natural

PNPDet [G. Zhang, Cui, et al., 2021] WACV 2021 Center Net No Pascal / COCO Natural
UPE [A. Wu, Y. Han, et al., 2021] ICCV 2021 Faster RCNN Yes Pascal / COCO NaturalAttention /

Metric Learning GenDet [Liyang Liu et al., 2021] NNLS 2021 FCOS Yes Pascal / COCO Natural

RepMet [Karlinsky et al., 2019] CVPR 2018 Faster RCNN Yes Pascal / ImageNet Loc Natural
RN-FSOD [Yang et al., 2020] NEURIPS 2020 Faster RCNN Yes Pascal / ImageNet Loc Natural
MDODD [X. Zhao et al., 2021]† ICCV 2021 Faster RCNN No Pascal / COCO Natural
FSCE [B. Sun et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural

Metric learning
GD-FSOD [A. Wu, S. Zhao, et al., 2021] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural

LSTD [H. Chen et al., 2018] AAAI 2018 Faster RCNN Yes Pascal / COCO / ImageNet Loc Natural
MSPSR [Jiaxi Wu et al., 2020] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural
TFA [X. Wang et al., 2020] ICML 2020 Faster RCNN Yes Pascal / COCO / LVIS Natural
WOFG [Z. Fan et al., 2021]† CVPR 2021 Faster RCNN Yes Pascal / COCO Natural

Hallu-FSOD [W. Zhang et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
DHP [Wolf et al., 2021] ICCVW 2021 Faster RCNN Yes iSAID / NWPU VHR Aerial
LVC [Kaul et al., 2022] CVPR 2021 Faster RCNN No Pascal / COCO Natural
FSCN [Y. Li et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
FADI [Cao et al., 2021] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural

DeFRCN [Qiao et al., 2021] ICCV 2021 Faster RCNN Yes Pascal / COCO Natural
SIMPL [Y. Xu et al., 2021] TAEORS 2022 YOLO No xView (plane only) Aerial
DETReg [Bar et al., 2022] CVPR 2022 Deformable DETR Yes COCO Natural
CFA [Guirguis et al., 2022]† CVPRW 2022 Faster RCNN No Pascal / COCO Natural
CIR [Y. Wang et al., 2022] TGRS 2022 Faster RCNN Yes NWPU VHR-10 / DIOR Aerial

NIMPE [W. Liu, C. Wang, et al., 2022] ICASSP 2022 Faster RCNN Yes COCO Natural
HDA [She et al., 2022] IROS 2022 Faster RCNN Yes COCO Natural
MDB [S. Wu et al., 2022] LNCS 2022 Faster RCNN No Pascal / COCO Natural

DCB [B.-B. Gao et al., 2022]† NEURIPS 2022 Faster RCNN Yes Pascal / COCO Natural
CPP-FSOD [Lin et al., 2023] Preprint 2023 Faster RCNN Yes Pascal / COCO Natural

Fine-tuning
Strategy

I-DETR [Dong et al., 2022]‡ AAAI 2023 Deformable DETR No Pascal / COCO Natural

MetaDet [Y.-X. Wang et al., 2019] ICCV 2019 Faster RCNN No Pascal / COCO NaturalMeta-Learning Sylph [Yin et al., 2022]‡ CVPR 2022 Faster RCNN No COCO / LVIS Natural

OA-FSUI2IT [L. Zhao et al., 2022] AAAI 2022 Faster RCNN Yes Multiple datasets Natural
Acro FOD [Yipeng Gao et al., 2022] ECCV 2022 YOLO Yes Multiple datasets Natural
CD-CutMix [Nakamura et al., 2022] ACCV 2022 Faster RCNN No Multiple datasets Natural

CD-FSOD [Xiong et al., 2022] Preprint 2022 Faster RCNN Yes Multiple datasets Aerial
Cross-Domain

CD-MDB [K. Lee et al., 2022] ECCV 2022 Faster RCNN Yes Multiple datasets Aerial
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SAM [X. Huang et al., 2021] MDPI 2021 Faster RCNN No NWPU VHR-10 / DIOR Aerial

FSOD-FCT [G. Han, Ma, et al., 2022] CVPR 2022 Faster RCNN No Pascal / COCO Natural
SAR-DRM [Shiqi Chen et al., 2022] TGRS 2022 Faster RCNN No FUSAR-GEN Aerial
FSOD-PSI [Ouyang et al., 2022] JDT 2022 YOLO Yes Pascal / COCO Natural
SAFT [Y. Zhao et al., 2022] CVPR 2022 FCOS Yes Pascal / COCO Natural
APSP [H. Lee et al., 2022] WACV 2022 Faster RCNN No Pascal / COCO Natural

KFSOD [S. Zhang et al., 2022] CVPR 2022 Faster RCNN Yes Pascal / COCO Natural
FSODS [Zhou et al., 2022] TGRS 2022 YOLO Yes SMCDD-FS Aerial

TIN-FSOD [N. Liu et al., 2023] Arxiv 2023 Faster RCNN Yes NWPU VHR/ DIOR / HRRSD Aerial

Attention-based

FSOD-ICF [Jiang et al., 2023] WACV 2023 Faster RCNN Yes Pascal / COCO Natural

PNPDet [G. Zhang, Cui, et al., 2021] WACV 2021 Center Net No Pascal / COCO Natural
UPE [A. Wu, Y. Han, et al., 2021] ICCV 2021 Faster RCNN Yes Pascal / COCO NaturalAttention /

Metric Learning GenDet [Liyang Liu et al., 2021] NNLS 2021 FCOS Yes Pascal / COCO Natural

RepMet [Karlinsky et al., 2019] CVPR 2018 Faster RCNN Yes Pascal / ImageNet Loc Natural
RN-FSOD [Yang et al., 2020] NEURIPS 2020 Faster RCNN Yes Pascal / ImageNet Loc Natural
MDODD [X. Zhao et al., 2021]† ICCV 2021 Faster RCNN No Pascal / COCO Natural
FSCE [B. Sun et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural

Metric learning
GD-FSOD [A. Wu, S. Zhao, et al., 2021] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural

LSTD [H. Chen et al., 2018] AAAI 2018 Faster RCNN Yes Pascal / COCO / ImageNet Loc Natural
MSPSR [Jiaxi Wu et al., 2020] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural
TFA [X. Wang et al., 2020] ICML 2020 Faster RCNN Yes Pascal / COCO / LVIS Natural
WOFG [Z. Fan et al., 2021]† CVPR 2021 Faster RCNN Yes Pascal / COCO Natural

Hallu-FSOD [W. Zhang et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
DHP [Wolf et al., 2021] ICCVW 2021 Faster RCNN Yes iSAID / NWPU VHR Aerial
LVC [Kaul et al., 2022] CVPR 2021 Faster RCNN No Pascal / COCO Natural
FSCN [Y. Li et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
FADI [Cao et al., 2021] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural

DeFRCN [Qiao et al., 2021] ICCV 2021 Faster RCNN Yes Pascal / COCO Natural
SIMPL [Y. Xu et al., 2021] TAEORS 2022 YOLO No xView (plane only) Aerial
DETReg [Bar et al., 2022] CVPR 2022 Deformable DETR Yes COCO Natural
CFA [Guirguis et al., 2022]† CVPRW 2022 Faster RCNN No Pascal / COCO Natural
CIR [Y. Wang et al., 2022] TGRS 2022 Faster RCNN Yes NWPU VHR-10 / DIOR Aerial

NIMPE [W. Liu, C. Wang, et al., 2022] ICASSP 2022 Faster RCNN Yes COCO Natural
HDA [She et al., 2022] IROS 2022 Faster RCNN Yes COCO Natural
MDB [S. Wu et al., 2022] LNCS 2022 Faster RCNN No Pascal / COCO Natural

DCB [B.-B. Gao et al., 2022]† NEURIPS 2022 Faster RCNN Yes Pascal / COCO Natural
CPP-FSOD [Lin et al., 2023] Preprint 2023 Faster RCNN Yes Pascal / COCO Natural

Fine-tuning
Strategy

I-DETR [Dong et al., 2022]‡ AAAI 2023 Deformable DETR No Pascal / COCO Natural

MetaDet [Y.-X. Wang et al., 2019] ICCV 2019 Faster RCNN No Pascal / COCO NaturalMeta-Learning Sylph [Yin et al., 2022]‡ CVPR 2022 Faster RCNN No COCO / LVIS Natural

OA-FSUI2IT [L. Zhao et al., 2022] AAAI 2022 Faster RCNN Yes Multiple datasets Natural
Acro FOD [Yipeng Gao et al., 2022] ECCV 2022 YOLO Yes Multiple datasets Natural
CD-CutMix [Nakamura et al., 2022] ACCV 2022 Faster RCNN No Multiple datasets Natural

CD-FSOD [Xiong et al., 2022] Preprint 2022 Faster RCNN Yes Multiple datasets Aerial
Cross-Domain

CD-MDB [K. Lee et al., 2022] ECCV 2022 Faster RCNN Yes Multiple datasets Aerial
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3. Improving Small Object Detection in the Few-Shot Regime

Overview of the FSOD Literature – Application on Aerial Images

Approach Abbreviation Venue Date Detection Framework Multiscale Datasets Aerial / Natural Images

FRW [Kang et al., 2019] ICCV 2019 YOLO No Pascal / COCO Natural
OSOD-CACE [Hsieh et al., 2019] NEURIPS 2019 Faster RCNN Yes Pascal / COCO Natural
Meta R-CNN [Yan et al., 2019] ICCV 2019 Faster RCNN No Pascal / COCO Natural
FSOD-RSI [X. Li et al., 2021] TGRS 2020 YOLO Yes DIOR / NWPU VHR Aerial
ARPN [Q. Fan et al., 2020] CVPR 2020 Faster RCNN Yes COCO Natural
VEOW [Y. Xiao et al., 2020] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural

KT [Kim et al., 2020] SMC 2020 Faster RCNN Yes Pascal Natural
OSOD-WFT [X. Li, L. Zhang, et al., 2020] Preprint 2020 FCOS Yes Pascal / COCO / ImageNet Loc Natural
ONCE [J.-M. Perez-Rua et al., 2020]‡ CVPR 2020 Center Net No Pascal / COCO / Deepfashion Natural

WSAAN [Z. Xiao et al., 2021] TAEORS 2021 Faster RCNN Yes RSOD / NWPU VHR Aerial
FSOD-FPDI [Yuxuan Gao et al., 2021] MDPI 2021 FCOS Yes DOTA / NWPU VHR Aerial

Meta-FRCNN [G. Han, S. Huang, et al., 2022] AAAI 2022 Faster RCNN Yes Pascal / COCO Natural
Meta-DETR [G. Zhang, Luo, et al., 2022] TPAMI 2021 DETR No Pascal / COCO Natural

DRL [W. Liu, H. Li, et al., 2021] Preprint 2021 Faster RCNN Yes Pascal / COCO Natural
DANA [T.-I. Chen et al., 2021] TM 2021 Faster RCNN Yes Pascal / COCO Natural

SP [H. Xu et al., 2021] Access 2021 Faster RCNN Yes Pascal / COCO Natural
JCACR [Chu et al., 2021] ICIP 2021 YOLO Yes Pascal / COCO Natural
TI-FSOD [A. Li et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
SAM [X. Huang et al., 2021] MDPI 2021 Faster RCNN No NWPU VHR-10 / DIOR Aerial

FSOD-FCT [G. Han, Ma, et al., 2022] CVPR 2022 Faster RCNN No Pascal / COCO Natural
SAR-DRM [Shiqi Chen et al., 2022] TGRS 2022 Faster RCNN No FUSAR-GEN Aerial
FSOD-PSI [Ouyang et al., 2022] JDT 2022 YOLO Yes Pascal / COCO Natural
SAFT [Y. Zhao et al., 2022] CVPR 2022 FCOS Yes Pascal / COCO Natural
APSP [H. Lee et al., 2022] WACV 2022 Faster RCNN No Pascal / COCO Natural

KFSOD [S. Zhang et al., 2022] CVPR 2022 Faster RCNN Yes Pascal / COCO Natural
FSODS [Zhou et al., 2022] TGRS 2022 YOLO Yes SMCDD-FS Aerial

TIN-FSOD [N. Liu et al., 2023] Arxiv 2023 Faster RCNN Yes NWPU VHR/ DIOR / HRRSD Aerial

Attention-based

FSOD-ICF [Jiang et al., 2023] WACV 2023 Faster RCNN Yes Pascal / COCO Natural

PNPDet [G. Zhang, Cui, et al., 2021] WACV 2021 Center Net No Pascal / COCO Natural
UPE [A. Wu, Y. Han, et al., 2021] ICCV 2021 Faster RCNN Yes Pascal / COCO NaturalAttention /

Metric Learning GenDet [Liyang Liu et al., 2021] NNLS 2021 FCOS Yes Pascal / COCO Natural

RepMet [Karlinsky et al., 2019] CVPR 2018 Faster RCNN Yes Pascal / ImageNet Loc Natural
RN-FSOD [Yang et al., 2020] NEURIPS 2020 Faster RCNN Yes Pascal / ImageNet Loc Natural
MDODD [X. Zhao et al., 2021]† ICCV 2021 Faster RCNN No Pascal / COCO Natural
FSCE [B. Sun et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural

Metric learning
GD-FSOD [A. Wu, S. Zhao, et al., 2021] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural

LSTD [H. Chen et al., 2018] AAAI 2018 Faster RCNN Yes Pascal / COCO / ImageNet Loc Natural
MSPSR [Jiaxi Wu et al., 2020] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural
TFA [X. Wang et al., 2020] ICML 2020 Faster RCNN Yes Pascal / COCO / LVIS Natural
WOFG [Z. Fan et al., 2021]† CVPR 2021 Faster RCNN Yes Pascal / COCO Natural

Hallu-FSOD [W. Zhang et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
DHP [Wolf et al., 2021] ICCVW 2021 Faster RCNN Yes iSAID / NWPU VHR Aerial
LVC [Kaul et al., 2022] CVPR 2021 Faster RCNN No Pascal / COCO Natural
FSCN [Y. Li et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
FADI [Cao et al., 2021] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural

DeFRCN [Qiao et al., 2021] ICCV 2021 Faster RCNN Yes Pascal / COCO Natural
SIMPL [Y. Xu et al., 2021] TAEORS 2022 YOLO No xView (plane only) Aerial
DETReg [Bar et al., 2022] CVPR 2022 Deformable DETR Yes COCO Natural
CFA [Guirguis et al., 2022]† CVPRW 2022 Faster RCNN No Pascal / COCO Natural
CIR [Y. Wang et al., 2022] TGRS 2022 Faster RCNN Yes NWPU VHR-10 / DIOR Aerial

NIMPE [W. Liu, C. Wang, et al., 2022] ICASSP 2022 Faster RCNN Yes COCO Natural
HDA [She et al., 2022] IROS 2022 Faster RCNN Yes COCO Natural
MDB [S. Wu et al., 2022] LNCS 2022 Faster RCNN No Pascal / COCO Natural

DCB [B.-B. Gao et al., 2022]† NEURIPS 2022 Faster RCNN Yes Pascal / COCO Natural
CPP-FSOD [Lin et al., 2023] Preprint 2023 Faster RCNN Yes Pascal / COCO Natural

Fine-tuning
Strategy

I-DETR [Dong et al., 2022]‡ AAAI 2023 Deformable DETR No Pascal / COCO Natural

MetaDet [Y.-X. Wang et al., 2019] ICCV 2019 Faster RCNN No Pascal / COCO NaturalMeta-Learning Sylph [Yin et al., 2022]‡ CVPR 2022 Faster RCNN No COCO / LVIS Natural

OA-FSUI2IT [L. Zhao et al., 2022] AAAI 2022 Faster RCNN Yes Multiple datasets Natural
Acro FOD [Yipeng Gao et al., 2022] ECCV 2022 YOLO Yes Multiple datasets Natural
CD-CutMix [Nakamura et al., 2022] ACCV 2022 Faster RCNN No Multiple datasets Natural

CD-FSOD [Xiong et al., 2022] Preprint 2022 Faster RCNN Yes Multiple datasets Aerial
Cross-Domain

CD-MDB [K. Lee et al., 2022] ECCV 2022 Faster RCNN Yes Multiple datasets Aerial
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3. Improving Small Object Detection in the Few-Shot Regime

Overview of the FSOD Literature – Cross-Domain FSOD– Fine Attention-based
Approach Abbreviation Venue Date Detection Framework Multiscale Datasets Aerial / Natural Images

FRW [Kang et al., 2019] ICCV 2019 YOLO No Pascal / COCO Natural
OSOD-CACE [Hsieh et al., 2019] NEURIPS 2019 Faster RCNN Yes Pascal / COCO Natural
Meta R-CNN [Yan et al., 2019] ICCV 2019 Faster RCNN No Pascal / COCO Natural
FSOD-RSI [X. Li et al., 2021] TGRS 2020 YOLO Yes DIOR / NWPU VHR Aerial
ARPN [Q. Fan et al., 2020] CVPR 2020 Faster RCNN Yes COCO Natural
VEOW [Y. Xiao et al., 2020] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural

KT [Kim et al., 2020] SMC 2020 Faster RCNN Yes Pascal Natural
OSOD-WFT [X. Li, L. Zhang, et al., 2020] Preprint 2020 FCOS Yes Pascal / COCO / ImageNet Loc Natural
ONCE [J.-M. Perez-Rua et al., 2020]‡ CVPR 2020 Center Net No Pascal / COCO / Deepfashion Natural

WSAAN [Z. Xiao et al., 2021] TAEORS 2021 Faster RCNN Yes RSOD / NWPU VHR Aerial
FSOD-FPDI [Yuxuan Gao et al., 2021] MDPI 2021 FCOS Yes DOTA / NWPU VHR Aerial

Meta-FRCNN [G. Han, S. Huang, et al., 2022] AAAI 2022 Faster RCNN Yes Pascal / COCO Natural
Meta-DETR [G. Zhang, Luo, et al., 2022] TPAMI 2021 DETR No Pascal / COCO Natural

DRL [W. Liu, H. Li, et al., 2021] Preprint 2021 Faster RCNN Yes Pascal / COCO Natural
DANA [T.-I. Chen et al., 2021] TM 2021 Faster RCNN Yes Pascal / COCO Natural

SP [H. Xu et al., 2021] Access 2021 Faster RCNN Yes Pascal / COCO Natural
JCACR [Chu et al., 2021] ICIP 2021 YOLO Yes Pascal / COCO Natural
TI-FSOD [A. Li et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
SAM [X. Huang et al., 2021] MDPI 2021 Faster RCNN No NWPU VHR-10 / DIOR Aerial

FSOD-FCT [G. Han, Ma, et al., 2022] CVPR 2022 Faster RCNN No Pascal / COCO Natural
SAR-DRM [Shiqi Chen et al., 2022] TGRS 2022 Faster RCNN No FUSAR-GEN Aerial
FSOD-PSI [Ouyang et al., 2022] JDT 2022 YOLO Yes Pascal / COCO Natural
SAFT [Y. Zhao et al., 2022] CVPR 2022 FCOS Yes Pascal / COCO Natural
APSP [H. Lee et al., 2022] WACV 2022 Faster RCNN No Pascal / COCO Natural

KFSOD [S. Zhang et al., 2022] CVPR 2022 Faster RCNN Yes Pascal / COCO Natural
FSODS [Zhou et al., 2022] TGRS 2022 YOLO Yes SMCDD-FS Aerial

TIN-FSOD [N. Liu et al., 2023] Arxiv 2023 Faster RCNN Yes NWPU VHR/ DIOR / HRRSD Aerial

Attention-based

FSOD-ICF [Jiang et al., 2023] WACV 2023 Faster RCNN Yes Pascal / COCO Natural

PNPDet [G. Zhang, Cui, et al., 2021] WACV 2021 Center Net No Pascal / COCO Natural
UPE [A. Wu, Y. Han, et al., 2021] ICCV 2021 Faster RCNN Yes Pascal / COCO NaturalAttention /

Metric Learning GenDet [Liyang Liu et al., 2021] NNLS 2021 FCOS Yes Pascal / COCO Natural

RepMet [Karlinsky et al., 2019] CVPR 2018 Faster RCNN Yes Pascal / ImageNet Loc Natural
RN-FSOD [Yang et al., 2020] NEURIPS 2020 Faster RCNN Yes Pascal / ImageNet Loc Natural
MDODD [X. Zhao et al., 2021]† ICCV 2021 Faster RCNN No Pascal / COCO Natural
FSCE [B. Sun et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural

Metric learning
GD-FSOD [A. Wu, S. Zhao, et al., 2021] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural

LSTD [H. Chen et al., 2018] AAAI 2018 Faster RCNN Yes Pascal / COCO / ImageNet Loc Natural
MSPSR [Jiaxi Wu et al., 2020] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural
TFA [X. Wang et al., 2020] ICML 2020 Faster RCNN Yes Pascal / COCO / LVIS Natural
WOFG [Z. Fan et al., 2021]† CVPR 2021 Faster RCNN Yes Pascal / COCO Natural

Hallu-FSOD [W. Zhang et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
DHP [Wolf et al., 2021] ICCVW 2021 Faster RCNN Yes iSAID / NWPU VHR Aerial
LVC [Kaul et al., 2022] CVPR 2021 Faster RCNN No Pascal / COCO Natural
FSCN [Y. Li et al., 2021] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
FADI [Cao et al., 2021] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural

DeFRCN [Qiao et al., 2021] ICCV 2021 Faster RCNN Yes Pascal / COCO Natural
SIMPL [Y. Xu et al., 2021] TAEORS 2022 YOLO No xView (plane only) Aerial
DETReg [Bar et al., 2022] CVPR 2022 Deformable DETR Yes COCO Natural
CFA [Guirguis et al., 2022]† CVPRW 2022 Faster RCNN No Pascal / COCO Natural
CIR [Y. Wang et al., 2022] TGRS 2022 Faster RCNN Yes NWPU VHR-10 / DIOR Aerial

NIMPE [W. Liu, C. Wang, et al., 2022] ICASSP 2022 Faster RCNN Yes COCO Natural
HDA [She et al., 2022] IROS 2022 Faster RCNN Yes COCO Natural
MDB [S. Wu et al., 2022] LNCS 2022 Faster RCNN No Pascal / COCO Natural

DCB [B.-B. Gao et al., 2022]† NEURIPS 2022 Faster RCNN Yes Pascal / COCO Natural
CPP-FSOD [Lin et al., 2023] Preprint 2023 Faster RCNN Yes Pascal / COCO Natural

Fine-tuning
Strategy

I-DETR [Dong et al., 2022]‡ AAAI 2023 Deformable DETR No Pascal / COCO Natural

MetaDet [Y.-X. Wang et al., 2019] ICCV 2019 Faster RCNN No Pascal / COCO NaturalMeta-Learning Sylph [Yin et al., 2022]‡ CVPR 2022 Faster RCNN No COCO / LVIS Natural

OA-FSUI2IT [L. Zhao et al., 2022] AAAI 2022 Faster RCNN Yes Multiple datasets Natural
Acro FOD [Yipeng Gao et al., 2022] ECCV 2022 YOLO Yes Multiple datasets Natural
CD-CutMix [Nakamura et al., 2022] ACCV 2022 Faster RCNN No Multiple datasets Natural

CD-FSOD [Xiong et al., 2022] Preprint 2022 Faster RCNN Yes Multiple datasets Aerial
Cross-Domain

CD-MDB [K. Lee et al., 2022] ECCV 2022 Faster RCNN Yes Multiple datasets Aerial
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3.1 Cross-Scale Query-Support Alignment (XQSA)

Attention-base Few-Shot Object Detection principle:
Adapt features from the query image on the fly during inference from a few annotated support
examples. Built from three main components:

- Backbone: extracts features from the images.
- Query-Support Combination Module: combines query and support features.
- Detection Head: performs object detection in a class-agnostic manner.

Figure 6: Attention-based FSOD principle.

Great variety of Query-Support Combination Modules
I Introduction of a modular framework, called Alignment Attention Fusion (AAF) Framework, to
ease comparison and re-implementation [Le Jeune et al., 2022].
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3.1 Cross-Scale Query-Support Alignment (XQSA)

Objective: propose a better Query-Support combination block to improve small object detection.

XQSA’s motivation
- Combines query and support features from different scales together.
- Allows matching query and support objects from different sizes.

I properties not available in the literature.

Following our AAF framework, the Query-Support combination block is split into three components:
- Self Attention: filters query and support features independently.
- Spatial Alignment: locally compares features from query and support.
- Feature Fusion: aggregates relevant information for detection.

Figure 7: Overall structure of the Cross-Scale Query-Support Alignment block.
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3.1 Cross-Scale Query-Support Alignment (XQSA)

Figure 8: Illustration of the Spatial Alignment block in XQSA.
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3.1 Cross-Scale Query-Support Alignment (XQSA)

Comparison with two existing methods:

- Feature Reweighting (FRW) [Kang et al., 2019].
- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023].

I Two aerial datasets DOTA and DIOR, and two natural datasets Pascal VOC and MS COCO.

DOTA DIOR Pascal VOC MS COCO

All S M L All S M L All S M L All S M L

Base
Classes

FRW 49.04 25.48 59.17 63.37 62.20 8.21 48.66 80.67 63.21 15.67 47.94 81.73 29.03 13.08 35.87 48.00
DANA 53.98 37.00 62.27 70.32 62.71 10.92 49.34 83.17 65.17 18.14 50.58 80.11 38.14 23.30 51.85 56.38
XQSA 51.11 26.10 59.41 64.30 59.88 10.64 45.69 82.34 62.13 15.60 48.64 75.94 31.56 16.13 40.13 49.83

Novel
Classes

FRW 37.29 13.99 34.11 59.31 36.29 2.48 33.74 59.38 48.72 16.44 26.71 68.27 24.09 11.53 22.45 38.69
DANA 36.38 14.33 40.00 64.64 38.18 3.21 34.91 60.99 52.26 10.05 24.67 67.23 24.75 12.01 29.40 37.95
XQSA 41.00 17.84 44.57 54.46 41.51 4.12 40.69 58.21 53.94 19.46 34.86 66.14 25.03 12.57 26.05 38.55

Table 1: Performance comparison between XQSA, FRW, and DANA. mAP0.5 values are reported separately for base (top) and novel
(bottom) classes on DOTA, DIOR, Pascal VOC, and MS COCO with K = 10 shots. mAP values are reported for All, Small (

√
wh < 32),

Medium (32 ≤
√
wh < 96) and Large (

√
wh ≥ 96) objects.

Performance analysis:

I XQSA largely improves the detection of small objects both for natural and aerial images in
the few-shot regime.

I Improvements at the cost of slight performance drop on larger objects.

I Large overall improvements on aerial datasets.
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3.2 A Fine-Tuning Approach with Few-Shot Diffusion Detector

DiffusionDet translates the detection task into a denoising problem:

1. Generate random boxes.

2. Iteratively denoise the boxes to localize objects.

3. Classify objects inside the resulting boxes.

Figure 9: DiffusionDet principle.

Key properties of DiffusionDet:

- High performance on small objects in the regular setting.

- No prior on box generation (e.g. anchors boxes).

- Ability to increase the number of detections without retraining.
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3.2 A Fine-Tuning Approach with Few-Shot Diffusion Detector

Few-Shot Diffusion Detector (FSDD): A Fine-Tuning strategy for DiffusionDet

1. Train DiffusionDet in a regular manner on base classes.

2. Re-initialize the last classification according to the number of novel classes.

3. Partly freeze the model.

4. Re-initialize optimizer and learning rate scheduler.

5. Train the model with the NK images available for novel classes.

Figure 10: Per-layer representation of the detection model. Grey layers are frozen.

Freezing sweet spot:

- Backbone frozen up to stage i.

- Backbone fully frozen.

- Classification and regression
branches only.

- Last layers only.

- Bias or norm parameters in the
whole model.

- Fine-tune everything.
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3.2 A Fine-Tuning Approach with Few-Shot Diffusion Detector

Experimental comparison with existing methods on DOTA, DIOR, Pascal VOC and MS COCO:

- Feature Reweighting (FRW) [Kang et al., 2019].
- Dual AwareNess Attention (DANA) [T.-I. Chen et al., 2021].
- Self-Adaptive Attention (SAA) [Z. Xiao et al., 2021]
- Prototypical Faster R-CNN (PFRCNN) [Le Jeune, Mokraoui, et al., 2021]
- Cross-Scale Query-Support Alignment (XQSA) [Le Jeune et al., 2023]

DOTA DIOR Pascal VOC MS COCO
All S M L All S M L All S M L All S M L

FRW 35.29 13.99 34.11 59.31 37.29 2.48 33.74 59.38 48.72 16.44 26.71 68.27 24.09 11.53 22.45 38.69
DANA 36.50 14.32 40.28 64.65 38.18 3.21 34.91 60.99 52.26 10.05 24.67 67.23 24.75 12.01 29.40 37.95
SAA 35.12 - - - 32.38 - - - 51.70 - - - 21.42 - - -

PFRCNN 11.55 - - - 9.16 - - - - - - - - – - -
XQSA 41.00 17.84 44.57 54.46 41.51 4.12 40.69 58.21 53.94 19.46 34.86 66.14 25.03 12.57 26.05 38.55
FSDiffusionDet 57.93 45.99 61.33 53.25 55.80 14.66 54.14 72.82 55.80 15.05 30.20 69.64 24.03 5.17 19.23 38.62

Table 2: Novel classes performance of FSDiffusionDet on DOTA, DIOR, Pascal VOC and MS COCO datasets. The models employed to
produce this figure have been finetuned with K = 10 shots.

I Impressive overall performance
on aerial images.

I Large improvement on small
object on aerial images.

I Base classes performance is
much higher.

DOTA DIOR Pascal VOC MS COCO

Method Base Novel Base Novel Base Novel Base Novel

FRW 49.04 35.29 61.30 37.29 63.21 48.72 29.03 24.09
DANA 53.99 36.50 62.71 38.18 65.17 52.26 38.14 24.75
SAA 46.72 35.12 62.79 32.38 65.27 51.70 40.87 21.42

PFRCNN 36.32 11.55 42.37 9.16 - - - -
XQSA 51.11 41.00 59.88 41.51 62.13 53.94 31.56 25.03
FSDiffusionDet 69.58 57.93 81.71 55.80 74.63 55.80 51.91 24.03

Table 3: FSDiffusionDet baseline compared with other FSOD methods. mAP is
reported with a 0.5 IoU threshold and K = 10 shots.
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I Large improvement on small
object on aerial images.

I Base classes performance is
much higher.

DOTA DIOR Pascal VOC MS COCO

Method Base Novel Base Novel Base Novel Base Novel
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Table 3: FSDiffusionDet baseline compared with other FSOD methods. mAP is
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3.3 Scale-Adaptive IoU for Training Few-Shot Detection Models

Definition and properties of Intersection over Union
IoU is a box similarity criterion.
Key component of all detection frameworks: leveraged as loss function, for example selection,
NMS, and model evaluation.

I IoU is scale-invariant

I Scale-invariance is problematic for small objects as detectors do not have this property.

I Small prediction shift can have a large influence on the IoU with ground truth: problematic
for training and evaluation.
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3.3 Scale-Adaptive IoU for Training Few-Shot Detection Models

Scale-Adaptive Intersection over Union (SIoU) [Le Jeune et al., 2023]

SIoU(b1, b2) = IoU(b1, b2)p with p = 1− γe−
√
a

κ (6)

where a is the mean area of the two boxes b1 and b2 (a =
w1h1+w2h2

2 ).
γ ∈ [−∞, 1] and κ ∈ R∗

+ are hyper-parameters to control SIoU’s behavior.

b1 = (x1, y1,w1, h1) and b2 = (x2, y2,w2, h2).

Scale invariance of IoU is relaxed in a
controllable manner.

I γ controls the direction of the
relaxation: criterion values are either
boosted or decreased.

I κ controls the speed at which IoU’s
behavior is recovered.

Figure 11: Illustration of the scale invariance relaxation of SIoU.
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3.3 Scale-Adaptive IoU for Training Few-Shot Detection Models

IoU and SIoU as loss functions.

IoU Loss:

LIoU(b̂i, bi) = 1− IoU(b̂i, bi), (7)

SIoU Loss:

LSIoU(b̂i, bi) = 1− SIoU(b̂i, bi). (8)

SIoU(b1, b2) = IoU(b1, b2)
p
,

with p = 1 − γe−
√
a

κ .

Both loss functions can be extended to output negative values when boxes do not overlap,
following Generalized IoU [Rezatofighi et al., 2019].

SIoU loss can control the training balance between small and large objects.

I With γ < 0, SIoU(b̂i, bi) ≤ IoU(b̂i, bi), hence LSIoU(b̂i, bi) ≥ LIoU(b̂i, bi).

I Small objects have more influence on the overall loss.

I Training is then biased to improve the localization of small targets.

With γ > 0, SIoU becomes more suitable than IoU for model evaluation as it aligns better with
human perception (shown with a user study).
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3.3 Scale-Adaptive IoU for Training Few-Shot Detection Models

Comparison with existing criteria on DOTA:
- IoU and GIoU [Rezatofighi et al., 2019]
- α-IoU [He et al., 2021]
- Normalized Wasserstein Distance (NWD) [C. Xu et al., 2022]
- Scale-Adaptive Intersection over Union (SIoU) [Le Jeune et al., 2023]

Base classes Novel Classes
Loss All S M L All S M L

IoU 50.67 25.83 57.49 68.24 32.41 10.06 47.87 67.09
α-IoU 46.72 13.24 55.21 69.94 33.95 12.58 46.58 74.50
SIoU 53.62 24.07 61.91 67.34 39.05 16.59 54.42 74.49

NWD 50.79 19.19 58.90 67.90 41.65 28.26 50.16 65.06
GIoU 52.41 26.94 61.17 63.00 41.03 24.01 52.13 69.78
GSIoU 52.91 22.14 61.19 66.02 45.88 34.83 51.26 70.78

Table 4: Few-shot performance comparison between several
criteria: IoU,α-IoU, SIoU, NWD, GIoU, and GSIoU trained on
DOTA. mAP is reported with a 0.5 IoU threshold for small (S),
medium (M), large (L), and all objects. K = 10 shots.

Base classes Novel Classes
XQSA All S M L All S M L

DOTA w/ GIoU 52.41 26.94 61.17 63.00 41.03 24.01 52.13 69.78
w/ GSIoU 52.91 22.14 61.19 66.02 45.88 34.83 51.26 70.78

DIOR w/ GIoU 58.90 10.38 40.76 80.44 47.93 9.85 47.61 68.40
w/ GSIoU 60.29 11.28 43.24 81.63 52.85 13.78 53.73 71.22

Pascal w/ GIoU 51.09 13.93 40.26 62.01 48.42 18.44 36.06 59.99
w/ GSIoU 54.47 13.88 40.13 66.82 55.16 22.94 36.24 67.40

COCO w/ GIoU 19.15 8.72 22.50 30.59 26.25 11.96 23.95 38.60
w/ GSIoU 19.57 8.41 23.02 31.07 27.11 12.81 26.02 39.20

Table 5: Few-shot performance on four datasets: DOTA, DIOR, Pascal VOC
and COCO. GIoU and GSIoU losses are compared. mAP is reported with a 0.5
IoU threshold and for all object sizes. K = 10 shots.

I SIoU and GSIoU losses dominate other critera.

I SIoU and GSIoU brings large improvements for small object detection.

I For aerial images, it induces large overall detection performance gains.
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3.4 Key Takeaways

Three contributions for small object detection in the few-shot regime

1 Cross-Scale Query-Support Alignment (XQSA), an attention mechanism for small FSOD.
� XQSA largely improves the detection performance of small objects in the few-shot regime.
� Very helpful for aerial images.
� Improvements on small targets at the cost of larger objects, more polyvalent attention

mechanisms should be developed.

2 Few-Shot DiffusiontDet a fine-tuning-based approach for small FSOD.
� Substantial improvements on FSOD for aerial images with large gains on small objects with

learnable box prior.
� Much easier to train and scales better with the number of shots.
� Find a way to predict how much freezing will be optimal for a dataset.

3 Scaled-Adaptative Intersection over Union (SIoU) is a controllable relaxation of IoU.
� Largely improves small object detection in the few-shot regime by shifting the training

balance between small and large objects.
� Better aligned with human perception and well-suited for model evaluation.
� Limited gains in regular settings and with DiffusionDet.
� Requires the tuning of γ and κ.
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4. Addressing more Complex Scenarios

Promising performance of FSDiffusionDet allows envisioning Cross-Domain
applications

Differences with Few-Shot Object Detection:

- Use two separate datasets between base training
and fine-tuning.

- Base classes are all classes of the source dataset.

- Novel classes are all classes of the target dataset.

- Target dataset only has K images for each class.

Only interested in the detection performance on the novel
classes (i.e. the target classes).

Figure 12: Cross-Domain Few-Shot Object Detection (CD-FSOD).
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4. Addressing more Complex Scenarios

COCO→ Anything scenarios
Base training on COCO and fine-tuning on another dataset, experiment with DOTA [Xia et al.,
2018], DIOR [K. Li et al., 2020], DeepFruit, SIXRay [Miao et al., 2019], CipArt [Inoue et al., 2018],
VisDrone [Y. Sun et al., 2022].

K Shots DIOR DOTA DeepFruits SIXRay ClipArt VisDrone

1 11.10± 0.32 4.03± 0.26 38.47± 1.42 4.80± 0.87 2.09± 0.19 2.83± 0.17
5 30.42± 0.69 14.45± 0.43 55.58± 1.36 13.25±1.14 5.26± 0.15 5.74± 0.22
10 38.73± 0.65 25.02± 0.65 68.37± 2.01 21.26±1.33 5.69± 0.10 7.50± 0.10
20 48.23± 0.33 33.31± 0.46 73.95± 0.53 30.06±1.09 6.10± 0.22 9.14± 0.35
50 56.97± 0.60 43.23± 0.68 76.65± 0.78 41.93±1.02 6.44± 0.16 11.47± 0.27

Table 6: Cross-domain performance results on 6 scenarios COCO→ DIOR / DOTA /
DeepFruits / SIXRay / ClipArt / VisDrone. The average mAP0.5 is reported with a 95%
confidence interval.

I As in classical Few-Shot setting, performance improves
with K. Promising performance with a reasonable amount
of annotations.

I With K = 10, reduced performance for DOTA and DIOR,
more difficult task (more classes)

I Difficulties with some datasets, probably because of poor
annotation quality.

Figure 13: Performance of FSDiffusionDet on
multiple COCO→ X scenarios.
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4. Addressing more Complex Scenarios

Aerial Cross-Domain scenarios
Base training on DOTA and fine-tune on DIOR, and vice-versa.

DIOR→ DOTA
Backbone frozen Fully fine-tuned

K shots All S M L All S M L

1 5.41 2.72 6.28 4.51 5.09 3.08 6.72 4.07
5 25.88 16.99 31.47 22.50 24.90 15.85 29.67 22.27
10 31.99 17.64 36.90 31.23 33.30 15.97 37.13 32.45
20 38.77 21.68 46.49 34.79 41.30 21.97 45.90 41.08
50 44.07 29.22 52.66 41.00 49.22 29.41 55.94 52.82

Table 7: FSDiffusionDet Cross-domain results on the scenario
DIOR→ DOTA.

DOTA→ DIOR
Backbone frozen Fully fine-tuned

K shots All S M L All S M L

1 20.18 5.53 16.96 23.43 9.40 3.86 9.15 8.95
5 34.43 9.99 31.12 47.03 29.57 8.70 25.80 35.76
10 41.48 12.85 36.62 53.85 38.44 10.50 32.58 47.27
20 49.00 16.39 40.23 62.79 45.36 15.29 36.51 55.05
50 54.07 18.70 43.83 67.58 53.51 19.49 41.27 63.04

Table 8: FSDiffusionDet Cross-domain results on the scenario
DOTA→ DIOR.

I Higher performance than with COCO as source, promising for COSE’s applications.

I Different freezing sweet spot for DOTA→ DIOR and DIOR→ DOTA.

I Need for fine-tuning sweet spot estimation tools, e.g. a dataset/domain distance measure:
B Intuition: compatible domains require less plasticity and fine-tuning.
B Take domain shift into account.
B Relationship between base/source and novel/target classes (intra and inter-class variance).
B Work in progress...
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1 5.41 2.72 6.28 4.51 5.09 3.08 6.72 4.07
5 25.88 16.99 31.47 22.50 24.90 15.85 29.67 22.27
10 31.99 17.64 36.90 31.23 33.30 15.97 37.13 32.45
20 38.77 21.68 46.49 34.79 41.30 21.97 45.90 41.08
50 44.07 29.22 52.66 41.00 49.22 29.41 55.94 52.82

Table 7: FSDiffusionDet Cross-domain results on the scenario
DIOR→ DOTA.

DOTA→ DIOR
Backbone frozen Fully fine-tuned

K shots All S M L All S M L

1 20.18 5.53 16.96 23.43 9.40 3.86 9.15 8.95
5 34.43 9.99 31.12 47.03 29.57 8.70 25.80 35.76
10 41.48 12.85 36.62 53.85 38.44 10.50 32.58 47.27
20 49.00 16.39 40.23 62.79 45.36 15.29 36.51 55.05
50 54.07 18.70 43.83 67.58 53.51 19.49 41.27 63.04

Table 8: FSDiffusionDet Cross-domain results on the scenario
DOTA→ DIOR.

I Higher performance than with COCO as source, promising for COSE’s applications.

I Different freezing sweet spot for DOTA→ DIOR and DIOR→ DOTA.

I Need for fine-tuning sweet spot estimation tools, e.g. a dataset/domain distance measure:
B Intuition: compatible domains require less plasticity and fine-tuning.
B Take domain shift into account.
B Relationship between base/source and novel/target classes (intra and inter-class variance).
B Work in progress...
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5. Conclusion and Perspectives

Summary of this presentation

- Investigation of FSOD challenge with aerial Images:
I Small objects are more numerous in aerial images, poor examples in few-shot.

- Improvements of small object detection with Attention-based and Fine-tuning approaches:
I XQSA significantly improves small object detection.
I FSDiffusionDet outperforms all methods on aerial images and promising results in the

Cross-Domain scenarios.

XQSA FSDiffusionDet

� Adaptability to new classes � Simple and quicker training
� Very low-shot performance � Shot scalability
� Complex training scheme � Fine-tuning mandatory
� Inference speed � Cross-domain performance

- Carefully designed loss function can improve small object detection:
I SIoU loss allows precise control of the training balance between small and large objects.
I SIoU increase detection performance and helps for model evaluation.
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5. Conclusion and Perspectives

Research perpectives

- Attention-based approaches

I Design more versatile attention mechanisms for small and large objects.
I Reduce memory footprint of attention modules to speed up training and improve scalability.
I Develop fine-tuning-free approaches (possible but poor results so far).

- Fine-tuning approaches

I Develop predictive tools to find optimal plasticity (including theoretical groundings):
B Find a measure of difficulty for a given scenario, ideally few-shot compatible.
B Understand the need for plasticity and how it should be distributed within the models.

I Find a way to adapt the models without fine-tuning:
B Propose transductive approaches for object detection.
B Require solving regression in a transductive manner (e.g. Transductive Ridge

Regression [Cortes et al., 2006]).

- Scaled-adaptive Intersection over Union

I Understand in depth the training balance between small and large objects.
I Investigate its influence on other components of the detection frameworks (e.g. NMS and

example selection).
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5. Conclusion and Perspectives

Industrial perspectives

- Focus on CD-FSOD as closest from COSE Applications.

- Optimization and deployment of Few-Shot detection models:
I Few-Shot Detection originally planned as a ground processing, i.e. with much looser

constraints.
I Few-Shot models are much more challenging to optimize/quantize, existing tools

do not support custom layers.
I Quantization and model size reduction reduce performance, not suitable for

Few-Shot models.

- Automate fine-tuning and deployment pipeline for regular and Few-Shot Detection models.

� First flights in the following months: plenty of opportunity for further testing and refinements!
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A. Influence of Object Size on Few-Shot Performance

Detection of small objects is much more difficult in the few-shot regime.
Performance increases with object size.

Figure 14: Per-class detection performance against object size, split by dataset.

Figure 15: Per-class detection performance against object size.
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B. Scale-Adaptive Intersection over Union – User Study

User study conducted on 74
participants, more than 3000
individual answers.

Factor Analysis on human
ratings:

I Only object size has a
significant influence on
human ratings.

I SIoU compensates the
rating shift with object
size.

Figure 15: Rating against IoU, SIoU (γ = 0.2, κ = 64), NWD andα-IoU (α = 3) values, overall
and for different groupings of the variables of interest (object size, presence of contextual
information, expertise and age of the participants)



B. Scale-Adaptive Intersection over Union – User Study

Criteria empirical distributions split per human rating and object size.

Figure 16: Criteria’ scores for different object sizes and human ratings r ∈ {1, 2, 3, 4, 5}

cs,r =
Cs,r −

∑
s
Cs,r∑

s
Cs,r

, (9)

with Cs,r is the average criterion value (C ∈ {IoU, SIoU, α-IoU,NWD}) for an object size s and a
rating r.



C. Criteria Distributions Analysis

Figure 17: Criteria’s distribution comparison (top) γ = 0.5 and κ = 16 for SIoU and GSIoU, (bottom) γ = −4 and κ = 16.



D. Additional Results for SIoU

Influence of γ and κ on the performance.

Base classes Novel Classes

γ All S M L All S M L
0.5 47.09 21.29 54.67 65.48 30.50 8.83 44.97 65.89
0.25 45.94 21.60 54.39 63.40 30.96 12.53 42.37 64.14
0 52.41 26.94 61.17 63.00 41.03 24.01 52.13 69.78
-0.5 52.80 27.16 61.19 64.61 41.06 25.20 50.18 72.04
-1 53.03 23.20 61.53 66.68 42.77 27.55 52.01 70.76
-2 54.06 23.68 62.69 66.62 43.67 30.04 51.69 69.66
-3 52.91 22.14 61.19 66.02 45.88 34.83 51.26 70.78
-4 53.59 22.50 62.48 66.18 42.43 27.56 51.79 68.70
-9 53.11 20.98 62.13 67.00 42.63 30.53 48.89 68.62

Table 9: Evolution of the few-shot performance (XQSA with GSIoU
loss) on DOTA for various values of γ (κ = 16 is fixed). mAP is
reported with a 0.5 IoU threshold and for all object sizes.

Base classes Novel Classes

κ All S M L All S M L
4 51.65 21.50 59.76 65.85 42.98 30.33 48.57 73.41
8 52.70 21.96 61.49 66.43 44.16 31.35 50.70 71.99
16 54.06 23.68 62.69 66.62 43.67 30.04 51.69 69.66
32 53.88 22.33 63.00 67.35 37.36 23.65 44.60 66.29
64 52.82 21.79 61.46 66.77 43.68 29.43 52.47 69.46
128 53.42 21.73 62.90 66.75 41.32 26.85 49.40 70.38

Table 10: Evolution of the few-shot performance (XQSA with GSIoU
loss) for various values of κ (γ = −2 is fixed).



D. Additional Results for SIoU

SIoU is beneficial with multiple attention-based
FSOD methods.

Base classes Novel Classes
XQSA All S M L All S M L

FRW w/ GIoU 34.60 16.15 48.61 59.00 32.00 15.29 44.50 54.77
w/ GSIoU 30.36 11.94 44.30 54.87 32.94 16.69 42.87 62.64

DANA w/ GIoU 48.09 27.34 66.06 68.00 44.49 30.10 52.24 74.40
w/ GSIoU 50.10 32.19 65.46 67.77 41.40 21.07 54.80 75.23

XQSA w/ GIoU 45.30 26.94 61.17 63.00 41.03 24.01 52.13 69.78
w/ GSIoU 43.42 22.14 61.19 66.02 45.88 34.83 51.26 70.78

Table 11: Performance comparison with three different FSOD
methods: Feature Reweighting Kang et al. 2019 (FRW), Dual
Awareness Attention T.-I. Chen et al. 2021 (DANA) and our
Cross-scale Query-Support Alignment (XQSA), trained with GIoU and
GSIoU. mAP is reported with a 0.5 IoU threshold for small (S),
medium (M), large (L) and all objects.

SIoU’s influence on Regular Detection.

DOTA DIOR
FCOS All S M L All S M L

w/ GIoU 34.9 17.4 36.6 43.3 48.1 10.1 40.3 63.2
w/ GSIoU 36.8 17.5 40.4 45.2 49.2 11.0 41.2 66.1

Table 12: Regular Object Detection performance on DOTA and DIOR
datasets with GIoU and GSIoU (γ = −3 and κ = 16) losses. mAP is
computed with several IoU thresholds (0.5 to 0.95) as it is commonly
done in regular detection.



D. Additional Results for SIoU

Evaluation with SIoU as the evaluation threshold.

Base classes Novel Classes
Loss All S M L All S M L

IoU 55.81 35.03 62.57 70.05 39.10 18.58 53.93 68.83
α-IoU 53.05 20.60 61.05 72.41 41.93 20.99 55.74 76.79
SIoU 59.77 36.38 67.29 70.06 49.51 31.06 62.53 77.24

NWD 58.80 34.16 66.81 70.05 53.66 42.02 62.53 68.92
GIoU 59.27 44.07 66.91 65.46 49.02 35.10 57.58 74.30
GSIoU 59.32 35.32 66.29 69.03 57.70 46.77 65.56 73.67

Table 13: Few-shot performance comparison between several
criteria: IoU,α-IoU, SIoU, NWD, GIoU and GSIoU trained on DOTA.
mAP is reported with a 0.5 SIoU threshold for small (S), medium (M),
large (L), and all objects.

Base classes Novel Classes
XQSA All S M L All S M L

DOTA w/ GIoU 59.27 44.07 66.91 65.46 49.02 35.10 57.58 74.30
w/ GSIoU 59.32 35.32 66.29 69.03 57.70 46.77 65.56 73.67

DIOR w/ GIoU 62.06 17.49 45.55 82.22 53.81 23.79 53.46 71.63
w/ GSIoU 63.81 17.77 49.62 82.53 58.79 25.60 59.28 73.78

Pascal w/ GIoU 55.51 26.10 46.82 64.31 52.43 28.97 40.73 62.58
w/ GSIoU 58.74 27.47 46.56 68.93 58.92 31.36 41.65 69.71

COCO w/ GIoU 21.46 12.77 24.79 31.86 29.21 17.36 27.62 40.05
w/ GSIoU 21.97 12.80 25.72 32.35 29.94 18.87 29.93 40.47

Table 14: Few-shot performance on three datasets: DOTA, DIOR,
Pascal VOC and COCO. GIoU and GSIoU losses are compared. mAP is
reported with a 0.5 SIoU threshold and for various object sizes.



E. Additional Results for Few-Shot Diffusion Detector

Finding the fine-tuning sweetspot

Freezing point Plasticity rate DOTA DIOR Pascal VOC MS COCO

FT whole 100.00 % 60.09 52.17 43.10 17.15
Up to stage 1 99.98 % 58.85 53.37 43.81 17.72
Up to stage 2 99.47 % 57.41 53.21 41.23 17.73
Up to stage 3 96.57 % 59.88 54.36 47.57 19.49
Up to stage 4 79.66 % 56.13 57.51 53.72 21.88
FT head only 35.97 % 51.82 55.70 51.72 19.96
FT last layer only 0.03 % 0.05 0.11 0.53 0.01
Bias only 35.98 % 60.45 55.12 49.90 20.19
BatchNorm only 35.97 % 59.35 55.63 51.96 19.70

Table 15: Influence of the amount of plasticity on the FS performance on DOTA, DIOR, Pascal
VOC and MS COCO. mAP is reported with a 0.5 IoU threshold, K = 10 shots.

I Freezing the 4 first stages of the backbone is a sensible compromise.

I For DIOR, Pascal VOC and COCO, performance increases as plasticity decreases, up to stage 4.

I For DOTA, the trend is reversed.

I Fine-tuning some parameters in every layer produces impressive results with reduced plasticity.
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E. Additional Results for Few-Shot Diffusion Detector

FSDiffusionDet scales much better than other techniques with the number of shots K.

However, lower performance in very low shot settings K < 5.

K DOTA DIOR Pascal VOC MS COCO

1 4.19 27.17 22.24 7.43
2 9.83 40.31 31.98 12.45
3 27.61 43.54 29.52 15.75
5 39.00 46.92 38.08 19.33
10 52.05 54.32 52.64 24.99
20 62.79 60.24 59.26 28.76
30 67.32 65.28 64.19 31.19
50 71.91 71.21 67.81 34.64
100 72.27 77.05 71.31 38.77

Table 16: Influence of the number of shots on the few-shot object
detection performance of FSDiffusionDet on DOTA, DIOR, Pascal VOC
and MS COCO. Performance is reported with mAP0.5 .

Figure 18: Performance of FSDiffusionDet, XQSA, FRW, DANA and
WSAAN on DOTA, DIOR, Pascal VOC and MS COCO against the number
of shots. Performance is reported with mAP0.5 .



E. Additional Results for Few-Shot Diffusion Detector

Influence of the pre-training of the backbone

Backbones DOTA DIOR Pascal VOC MS COCO

Scratch 7.28 8.72 13.72 0.38
ImageNet 52.05 54.32 52.64 24.99
DINO 46.84 55.88 54.58 23.94
CLIP 40.36 51.61 49.81 19.83

Table 17: Study of the influence of the backbone pre-training.
mAP0.5 is provided only for base classes, the blue and red colors to
distinguish between base and novel classes are no longer required.

Influence of the number of proposals

# of Proposals DOTA DIOR Pascal VOC MS COCO

200 41.57 52.92 52.86 23.24
250 47.97 47.62 52.28 22.61
300 55.76 51.77 51.81 22.46
350 52.27 50.41 50.63 22.13
400 46.49 49.98 50.55 20.04
450 53.11 53.07 51.06 20.48
500 52.03 55.31 51.44 20.25

Table 18: Analysis of FSDiffusionDet performance (mAP0.5 ) against
the number of proposals on DOTA, DIOR, Pascal VOC and MS COCO
datasets.



F. Prototypical Faster R-CNN

Figure 19: Illustration of the architecture of Prototypical Faster R-CNN.



G. Qualitative Resultswith Prototypical Faster R-CNN

Figure 20: Qualitative results with Prototypical Faster R-CNN.



G. Qualitative Resultswith Attention-based methods

Figure 21: Qualitative results with Attention-based methods on base
classes.

Figure 22: Qualitative results with Attention-based methods on
novel classes.



G. Qualitative Resultswith FSDiffusionDet

Figure 23: Qualitative results with Attention-based methods on novel classes.
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