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ABSTRACT

Exposure is a fundamental component of a good picture. However,
it can be quite challenging to set the camera parameters to get it
right. Overexposed shots can be corrected, but this also demands
some expertise. In this work, we try to show that this correction can
be automated using deep learning. We use conditional adversarial
networks in order to correct overexposed images. We mainly build
our method on previous work from [1] that introduced a success-
ful GAN architecture for image-to-image translation problems. On
top of that, we make use of more recent techniques to improve the
quality of the reconstructions, such as spectral normalization, noise
injection and a custom loss design.

1. INTRODUCTION

Taking pictures with a camera is not always straightforward, many
parameters must be adjusted in order to get a good looking image.
One of the most important feature of a picture may be its exposure.
The exposure represents the quantity of light received by the sen-
sor of the camera and can be tuned with three parameters: the lens
aperture, the shutter time and the film speed. The two first change
directly the amount of light that gets into the camera. The latter
one changes the sensitivity of the sensor to light. Such a sensor
have a limited range of light intensity that can be perceived. This
means that any light intensity above (resp. under) this range will be
seen represented as white (resp. black) in the picture. These white
(resp. black) areas on a are called overexposed (resp. underexposed).
Changing film speed allows to shift this range: a small film speed
will capture low intensity lights while a big one will capture high
intensity lights. Nowadays, it corresponds to the sensitivity of the
sensor but it was with analog photography the sensitivity of the pho-
tographic film inside the camera. Adjusting these parameters may
be tricky, but most of the recent cameras propose automatic sug-
gestions in order to make photographer’s lives easier. Nonetheless,
in some cases when a scene has both high and low light intensities
(e.g. backlighting photography), it is not possible to avoid overex-
posure or underexposure. Now, this problem can be avoided using
high dynamic range images (HDR). These images are generated us-
ing multiple ’standard’ range images taken with different exposure.
This allows to get details from both dim and bright parts of a scene.
The combination of these images is called tone-mapping.

However, HDR images require both cameras that are able to gen-
erate such images and devices that are able to display it. Most of
the screens we use in our day-to-day life cannot show all the tones
present in a HDR image. These equipment are still expensive and not
widespread. Another solution is to modify images after the shot was
taken in order to correct overexposure. The main idea of this work
is to find a method able to adjust the exposure of an image in order
to get close to an optimum exposure. Here the optimum exposure
is an exposure that looks ’natural’ for the human eye, i.e. without
overexposed (or underexposed) parts. The problem can then be split

in two. First, the algorithm must find how much to shift the overall
exposure of the picture in order to make it more natural. Then, it
needs to reconstruct missing parts that were outside the range. The
latter part is clearly the most difficult, the algorithm only gets the
overexposed picture and has no information about the missing parts.

In order to address such problems, we decided to make use of
generative adversarial networks (GANs), a class of artificial neural
networks introduced five years ago in [2]. These kinds of networks
have shown their ability to produce high quality samples just from
random noise. They have been used in a conditional setting as well
[3], conditioned on labels and more recently conditioned on images
[1]. These networks will be mainly based on convolutional layers,
which have been extensively used in deep learning and computer
vision for almost a decade.

2. RELATED WORK

2.1. Generative adversarial networks

Generative adversarial networks (GANs) are a class of deep gener-
ative models introduced in [2] that have been very successful in the
last few years, achieving state-of-the-art results of many different
generative tasks such as style transfer [4, 5], image-to-image trans-
lation [1], text-to-image [6], super resolution [7] and many others.
The key idea behind GANs is to train two neural networks at the
same time. One, called the generator, will generate data, given some
random noise, and try to match the dataset distribution. The second
one, called the discriminator, will learn to distinguish between real
data, from the dataset, and generated samples created by the gener-
ator. More precisely, the discriminator will compute the probability
that a sample came from the true distribution. In a way, it can be seen
that the two networks are competing against each other: the genera-
tor tries to fool the discriminator while the discriminator aims to spot
the fake samples created by the generator. In order to enforce these
behaviours, both networks must be trained based on their mistakes,
meaning that the generator must be penalized when the discriminator
spots a fake. And when it fails, the discriminator itself is penalized.
The networks are trained in order to find a solution to the following
minimax game:

min
G

max
D

Ex∼pdata(x) log(D(x)) + Ez∼pz(z) log(1−D(G(z)))

(1)
Here pdata represents the distribution of the training dataset,

which is the distribution that the generator G must learn. pz is a
prior distribution on the random noise fed to the generator as an in-
put. It is most of the time a normal distribution. G and D repre-
sent the functions estimated by the generator and the discriminator
respectively. In a general setting (i.e. if G and D could be any
function) there would be an unique solution to this game, that is,
G(z) = x ∼ pdata(x) and D(x) = 1/2.



In practice however, things are not so well behaved. First the
functions estimated by neural networks are not arbitrary functions.
Therefore, it is not certain that the unique solution to the game is
reachable. Then, it has be shown that training directly to the objec-
tive described in (1) often leads to convergence issues [8]. In order
to prevent that, one can train the discriminator and the generator on
slightly different objectives:

LD = Ex∼pdata(x) log(D(x))+Ez∼pz(z) log(1−D(G(z))) (2)

LG = Ez∼pz(z) log(D(G(z))) (3)

LD and LG are the losses that will be optimized by the two
networks. The original GAN framework proposed LG = −LD but
the loss describe in (3) gives better results in practice.

2.2. Conditional generative adversarial networks

Training using labels seems to improve the generative performances
of the GANs [3]. The main idea is to give to the generator some
information in addition of the random noise. This can be class labels
for instance and it will force the generator to create samples from
a specific class. Then, the discriminator is also given the class and
must distinguish between fake and real samples within each class.
This technique improves the quality of the samples and stabilizes
the training. This idea can be used as well for image manipulation.
Instead of just giving random noise and class labels, one can give
images to the generator. The generator must then modify the image
in order to match with the training distribution. In this setting, we
will talk about reconstructed images rather than generated ones. This
is the key idea of image-to-image translation [1] and this is what we
have used for this project. In that case, we give two images to the
discriminator: the same that was fed to the generator and either the
reconstructed one or the original. The discriminator must then output
a probability for the latter one to be reconstructed (i.e. fake) or the
original (i.e. real).

This method can be applied with various datasets and have al-
ready been used for multiple tasks: satellite image to map conversion
[1], underwater image color correction [9], JPEG compression arti-
facts removal [10] and plenty others. Most of the time, this method
is used without noise in the generator and is therefore quite different
from the usual GAN framework. Moreover, in most applications, an
additional supervised loss is used during training. Of course, this
improves a lot the quality of the reconstructed images, but it moves
the model away from the original unsupervised GAN framework.

2.3. Supervised losses for image-to-image translation

Plenty of losses have been used for such a purpose. First, we used
a content loss that simply penalizes the generator when the recon-
structed image is different from the target. One way to do so is to
add a L1 loss between the reconstruction G(x) and the target recon-
struction y.

Lcontent = Ex,y
(
‖y −G(x)‖1

)
(4)

Another widespread technique is to make use of a perceptual
loss in order to improve the quality of the reconstruction. This have
be seen in many previous works [7, 11, 10]. This relies mostly
on transfer learning. A pre-trained classification network, typically
VGG-19, is used. The reconstruction and target images are fed to
this network and the feature maps at different levels in the network

are compared and used to assess how alike the two images are. In-
tuitively, the reconstruction and the target should be perceived the
same way by VGG-19. To do so, a new term is added to the genera-
tor loss:

Lperceptual = Ex,y
(∑
i∈C

1

WiHi
‖φi(y)− φi(G(x))‖1

)
(5)

The output function of the i-th feature map of the classification
network is represented by φi and C is the set of feature maps chosen
for the loss. In most applications only a few feature maps are used
in the perceptual loss. This is not optimal because two images could
be similar for some feature maps and rather different for others. In
our implementation we will use 5 features maps, regularly spaced in
the network, out of the 16 available in VGG-19 (only convolution
layers matters here). This gives a good estimate of how similar the
two images are perceived by the network and reduces the processing
time. Finally, the contribution of each feature map to the loss is
normalized by the size of the feature map, in order to give the same
weight to each feature map.

3. METHOD

3.1. Network architecture

In order to tackle the overexposure correction we chose a similar ar-
chitecture as the one proposed in the Pix2pix paper [1].In this work
they proposed a fully convolutional U-net generator. It is composed
of 4 down-sampling blocks. Each of them is composed of two con-
volutional layers (with stride 1) and one pooling layer (see Figure
1). The up-sampling part of the network is basically the same with
transposed convolutions instead of the pooling layers. This works
basically as an autoencoder, the down-sampling part encodes the im-
age characteristics into a latent space, which is then decoded by the
up-sampling part. The main difference is that there are residual con-
nections between the encoding and the decoding parts. This allows
to keep the original information present in the image along the re-
construction. Batch normalization is used in every layer except for
the first and the last, as recommended in [1]. This encoder-decoder
structure allows the network to learn a latent representation of the
image structure. In the case of the overexposure correction, the input
image and the desired reconstruction share a lot of structure. Once
the structure is encoded, the decoder can reconstruct the image with
a correct exposure.

The discriminator is as well composed only of convolutional lay-
ers. Unlike in the generator though, the convolutional layers have a
stride of 2 and there are no pooling layers between convolutions (see
Figure 1). This is a slight difference from the original GAN frame-
work where the discriminator just outputs a probability of the input
being real. Here the output of the discriminator is a 2D-map where
each point gives the probability of a N ×N region of the input im-
age to be real. The size of each region is called the field of view of
the network. Such a network sees the image as a Markov random
field where two pixels separated by greater distance than the width
of the field of view are considered independent. Therefore these pix-
els can be classified independently. It means that the discriminator
only focuses on structures of a size relatively similar to the size of
its field of view (see Figure 2). This suggest that the field of view
of the discriminator will have a key role in how good it performs.
Hence, it will probably have a great influence on the overall training
(see Section 4 for more detail).
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Fig. 1: Architectures of the generator and the discriminator used in
our work. Note that these architectures were not used for all exper-
iment. In particular the experiments about the field of view needed
slight modifications in the convolutions.

In order to stabilize the training, we decided to use spectral nor-
malization [12] both in generator and discriminator, on all convo-
lutional layers. Spectral normalization is a way to enforce the lip-
schitzian constraint on a network. This constraint has been proven
to be efficient in previous work such as [13]. The main idea behind
spectral normalization is to normalize the weight matrices in the net-
work by their spectral norm, i.e. by their largest eigenvalue. This
restricts the outputs of the network the be within a certain range:

‖G(x)−G(y)‖ < ‖x− y‖ (6)

This constraint implies an interesting property on the gradient of
G, that is it must be smaller than one. This prevents the gradient to
explode and stabilizes a lot the training.

3.2. Loss design

Instead of using the original GAN objective we chose to use the least
squares GAN objective [14]. It has been proven to be more stable
and, to some extent, produces higher-quality images. This objective
can be expressed as follows:

LD =
1

2
Ex∼pdata(x)

(
D(x)2

)
+
1

2
Ez∼pz(z)

(
(1−D(G(z)))2

)
(7)

LLS =
1

2
Ez∼pz(z)

(
D(G(z)2

)
(8)

Fig. 2: The field of view of a convolutional network correspond to
the area of the input image that is used to compute the value of one
point of the output map.

As mentioned above, the loss design is crucial for image ma-
nipulation, and in a supervised setting as this one, perceptual and
content losses can be used to significantly improve the quality of
the reconstructions. Training without these losses is less stable, pro-
duces high frequency artifacts in the reconstructions and add blur to
the output. This will be discussed in more details in the next sec-
tion. Hence in order to have some flexibility on the loss design, we
defined an overall objective for the generator:

LG = LLS + λcLcontent + λpLperceptual (9)

Here λc and λp are parameters that allows to tweak the objective
to put more weight on perceptual loss or on content loss. The per-
ceptual and content loss that we used are the ones defined in section
2.3.

3.3. Noise injection

As mentioned before, in this setting, there is no noise introduced in
the model at any time. This is a great change from the GAN frame-
work that is on the contrary based on noise to generate samples.
Adding noise to our model would perhaps give the generator some
’inspiration’ in order to fill the overexposed areas where all informa-
tion is missing. In order to do so, we decided to introduced noise
after each convolutional layer. This noise is directly added to the
feature map as proposed in [5]. The noise is sampled from a normal
distribution and then scaled by a set of learnable, per-channel param-
eters (see Figure 3). A new sample is drawn for each convolution.
The consequences of this are further described in section 4.

3.4. Quality assessment

It is easy for a human-eye to tell if a picture is correctly exposed or
not. An image is rightly exposed when it looks natural for us, i.e.
as if we were looking to the scene with our eyes. However this is
a clearly subjective way of assessing the performance of our model.
Plus, it is quite complicated to transpose this criterion for a machine.
In order to assess the quality of the reconstruction, we need to find
an objective way to assess the quality of the reconstructions. To do
so, we propose two different metrics: one will assess the similarity
between the reconstructed image and the original one and a second
will assess how ’natural’ are the generated samples.
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Per-channel learnable
parameters

Fig. 3: After each convolution, noise is added to the feature map.
The noise is sampled from a normal distribution and is scaled by a
learnable set of parameters before being added to each channel.

3.4.1. Histogram similarity score

The first thing that we want to measure is how close the reconstruc-
tion is from the target. This could be rather easily be measured by
taking the L1 Loss between these two images. However this is cer-
tainly not a good way to proceed as there might exist plenty of ac-
ceptable reconstructions for one overexposed image. The L1 Loss
however will only have one unique solution, that is the reconstruc-
tion is identical to the target. Therefore, another metric must be
introduced. The one chosen was proposed in [15]. Their work is
partly focused on exposure as well, therefore it seems reasonable to
use their metric. This score measures the similarity between two
datasets by computing distribution histograms of three features of
the images: the luminance, the saturation and the contrast, which are
closely related to the exposure. These three quantities are computed
for each image and histograms are built for each quantity and each
dataset. We can then compare how similar the datasets are in order
to assess the quality of the reconstructions. When the histograms of
the original dataset and the reconstruction dataset are highly similar,
it means that the images are looking very similar in terms of lumi-
nance, contrast and saturation. It seems that this is a good way of
assessing the exposure correction as the overexposed dataset have
a poor similarity on these three quantities compared to the original
one and the more overexposed the images are, the lower the similar-
ity (see Table 1).

3.4.2. Inception Score

The second metric that we chose is the Inception Score (IS) which
was introduced in [16]. This metric has been extensively used in the
last few years to assess the quality of GAN’s samples as it correlates
well with how ’natural’ the samples look for a human observer. This
is exactly what we want for our reconstruction. The IS is computed

Threshold 0.2 0.5 0.8 1
Luminance Sim. 33.86% 54.13% 66.38% 100%
Contrast Sim. 61.12% 66.92% 77.62% 100%
Saturation Sim. 38.41% 52.03% 69.98% 100%

Table 1: Similarity scores between overexposed dataset with differ-
ent thresholds and the original ones. The more overexposed, the less
similar they are.

using the inception network V3, a pre-trained classification network
on ImageNet. It measures how diverse are the generated samples
and how well each sample represents a defined object. To do so, we
compute the probability of each class, conditioned on an image (i.e.
this is just the output of the classification network) and the marginal
probability (approximated by averaging all the conditional probabil-
ities) of all images. The conditional probabilities should be focused,
i.e. a high value for one class and small ones for all others as the
object in the image should be clearly recognizable. The marginal
probability therefore should be close to the uniform distribution as
all the classes in the dataset should be equally represented in order
to have diverse samples. The Kullback-Leiber divergence between
the condition and marginal probabilities gives a measure of how dis-
similar these distributions are. It will give the highest value for a
completely focused conditional distribution and a uniform marginal
one. Therefore a high IS will indicate high quality samples.

3.5. Dataset generation

In order to train such networks, we need to have a lot a images and
more importantly we need to have pairs of overexposed and correctly
exposed (that we will call originals) images. The best way to do so
is to simulate overexposure on an existing dataset. Here we chose
to use a subset of the Places365 dataset. The first thing to do is
to remove all the images that are overexposed or underexposed. It
is important to remove overexposure from the dataset as it will be
used as example of correct exposure to train the network. We also
want to control the amount of overexposure in our experiments so
it is crucial to have no overexposure before simulating it, otherwise
this amount may be variable. Actually, the amount of overexposure
simulated will never be exactly the same between two images as it
depends and the luminance of the original image. An image with
a high luminance will be more overexposed than an image with a
lower luminance, even if the same overexposure is simulated.

The simplest way to simulate overexposure would be to directly
clip the pixel intensities above a certain threshold. This of course
will generate some overexposure but this is not the way it happens
when a real picture is overexposed. As mentioned before, overexpo-
sure happens when light intensity is outside the range of detectable
light intensities of the camera sensor. Therefore to simulate overex-
posure, we need to clip the light intensities of the image. However,
our eyes are not sensitive linearly to the light intensity. The human-
eye is capable of distinguishing tones in very dim and very bright
areas at the same time, which suggest that the visual cells’ response
follows a logarithmic law. This is known as the Weber-Fechner law
[17] but it can be approximated by a power law (Stevens’s power
law). In order to make the picture close to what our eye sees, a power
law is applied to convert the light intensities captured by the camera
sensor into pixel intensities. This is called the gamma correction, for
the exponent parameter in the power law:

Ipixel = Iγlight (10)
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A typical value for this parameter is γ = 1
2.2
≈ 0.45 and this

is the value we used for all our experiments. Then, if we want to
simulate overexposure, we need to clip the light intensities and not
the pixels intensities. Therefore, we must convert the pixel intensi-
ties into light intensities before clipping and then convert them back.
This is illustrated in Figure 4. The last step to simulate the overex-
posure is to scale the light intensities once they are clipped in order
to use all the range of light intensities. Note that in practice cameras
use slightly modified gamma curve as a correction. This is called the
camera curve and it can vary from one camera to another.

Fig. 4: The overexposure process: each image is first mapped to
the so-called gamma space where pixel intensities are proportional
to the light intensities of the actual scene. The intensities are then
cropped above a certain threshold τ and finally the image is mapped
back to the original space.

3.6. Inverse transformation baseline

At this point, one might think that the overexposure can then be cor-
rected quite easily just by reversing the simulation operation pre-
sented above. This is demonstrated in Figure 4 and this method
does correct the overexposure to some extent. However the over-
exposed areas are completely lost, and this cannot be addressed this
way. Nevertheless this gives a reasonable baseline to compare with.

4. EXPERIMENTS AND RESULTS

4.1. Adding noise to the generator

As mentioned above, we decided to add noise into the generator in
order to improve the quality of the reconstructions. This was mainly
motivated by the hope that the noise would give some inspiration
to the network in order to reconstruct the overexposed areas. This
noise was added after each convolution layer in the generator (see
Figure 3). However it was not clear if noise was necessary in both
the encoder and the decoder part of the generator. At first, we tried
with noise only in the decoder part. The encoder part should only
wrap the information about the image into the latent space. The
reconstruction is done in the decoder part and here only we would
expect that noise is needed in order to inspire the network. Or at
least we would expect that if we were using a true auto-encoder net-
work. There are some important differences between our generator
and an auto-encoder. First, the latent space is quite large and it might
not be small enough to force the network to encode all the informa-
tion of the image and then reconstruct it. Meaning that some part of
the reconstruction may happen in the encoder part as well. Second,
there are some residual connections between the same-level blocks
of the encoder and decoder part. This also relax the constraint on
the encoding-decoding scheme as the information about the original
image can be retrieved through the residual connections and does
not need to be encoded that well. This emphasizes the fact that the
reconstruction may not only happen in the decoding part of the gen-
erator. Therefore, it may be interesting to add some noise as well in
the encoding part. In fact, it performs better with noise everywhere
in the generator (see Table 2). Even though it performs better on
the selected metrics, it is not clear that the reconstructions are better
when looking at it (see Figure 5).

(a) No noise (b) Decoder only (c) Encoder+decoder

Fig. 5: Comparison of the reconstructions with noise in different part
of the generator.

No noise Decoder only Encoder + decoder
IS 18.00 18.23 19.26
Luminance Sim. 88.44% 89.73% 89.97%
Contrast Sim. 88.29% 87.38% 88.74%
Saturation Sim. 83.23% 80.62% 83.55%

Table 2: Performance comparisons with different noise injection. It
seems clear that noise improve the performances and that it should
be added both in the encoder and the decoder.

4.2. Loss design

After trying different ways to add noise in the generator, we tried to
tweak the loss by changing the weights λc and λp of its components
(see eq. (9)). By default we chose λc = 50 and λp = 100. Of
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course, the higher these two weights, the farther we are from a true
GAN framework as the influence of the adversarial loss decreases.
However, when both λc and λp are small, the reconstructions are
blurry and some generation artifacts are quite visible (see Figure6).
Therefore, a compromise has to be found in order to get both nice
reconstructions and still make use of the adversarial setting. In the
end, it seems that the weights selected by default were satisfactory.
Therefore they will be used in all the following experiments.

(a) λc = 100 (b) λc = 10 (c) λc = 1

Fig. 6: Effect of λc on the reconstructions. One can see that with
small values, the output gets blurry and that generation artifacts are
more and more abundant.

4.3. Different fields of view for the networks

We finally discuss the importance of the size of the field of view
of the generator and the discriminator. The field of view of a con-
volutional network corresponds to the size of a patch of the input
image that is mapped into one element of the last feature map. This
means that each element of the last feature map is only influenced
by the pixel that are within this patch (see Figure 2). It seems quite
reasonable that this parameter will influence the quality of the re-
constructions. When the field of view is narrow, the generator has
only little context at its disposal to correct the exposure. This may be
problematic when reconstructing areas that are largely overexposed
and where no context can be find at all. On the contrary, when the
field of view is large, it might be hard for the network to find what is
relevant for the reconstruction as too much context is provided. This
is true as well for the discriminator. Therefore, it is crucial to find a
suitable size for the fields of view of the two networks.

Discriminator FoV 70 94 140
IS 19.26 17.99 17.65
Luminance Sim. 89.97% 89.23% 89.94%
Contrast Sim. 88.74% 87.06% 87.47%
Saturation Sim. 83.55% 79.75% 82.84%

Table 3: Score comparison with different field of view sizes for the
discriminator. The field of view of the generator was kept constant
at 47 pixels.

During the early stage of this work, and because of the discus-
sion about the discriminator field of view in [1], we thought that only
the field of view of the discriminator had some influence on the re-
construction. Therefore we tested different sizes and concluded that
a field of view of 70 pixels was the best for the discriminator (see
Table 3). However, this experiment has some flaws. Firstly, we did
not test values smaller than 70 (which was the suggested value from
[1]). We found that 70 gave the best performances but only com-
pared to larger sizes, smaller field of view may perform equally or

Generator field of view 70 140 140
Discriminator field of view 70 70 140

IS 21.18 21.46 21.2
Luminance Sim. 89.46 88.11 89.53
Contrast Sim. 89.67 90.63 90.4
Saturation Sim. 83.88 84.73 84.48

Table 4: Score comparison with different field of view sizes for the
discriminator and the discriminator. Scores are higher than in Table
3 because between these two experiments we added the perceptual
loss which provide a consequent boost of the performances.

even better. Secondly, we realized after some time that the generator
field of view was also important to the quality of the reconstructions.
Therefore, we started a new batch of experimentation to investigate
this. In the meantime, we had introduced the perceptual loss on top
of the content loss which increased a lot the performances. We did
not had the time to conduct again all the experiments from above to
have a proper comparison. Nevertheless, we tried to vary the field of
view of the generator and it seems that the best combination is, after
all, 140 pixels for the generator and 70 for the discriminator (see Ta-
ble 4). Again, we did not try smaller sizes, but as mentioned before,
small fields of view provide less context and are likely to perform
worse. In Figure 7 are compared the reconstructions with the differ-
ent sizes of the fields of view. It is not obvious from these images
which architecture performs the best. Even if it is quite subjective,
we found that the last one (140/140) was the one that looks the most
natural and which is the closest from the original image.

(a) 70/70 (b) 140/70 (c) 140/140

Fig. 7: Effect of the sizes of the fields of view of the networks. From
these images it seems that reconstruction (c) with a the generator and
the discriminator at 140 pixels produces the best results. However
this is not in agreement with the performance scores (see Table 4).

4.4. Results

These experiments helped us improve our architecture quite well. In
all the previous experiments, we trained the networks for approxi-
mately 10 hours. However it seemed that it was not fully converged.
Therefore, we trained our optimal model for one and a half day. It
achieved even better results. We also run a full training with random
overexposure. Up to now, in all our experiments the images were
overexposed by the same amount. The intensities above τ = 0.5
were cropped (in the linear space). Now, a difficulty is added as τ
is chosen randomly between 0.5 and 1 for each image. It turns out
that it performs a little bit better than with constant overexposure
(see Table 5). This may be explained because the random threshold
is picked randomly between 0.5 and 1. In average the threshold is
then 0.75, so there is less overexposure in that case. Of course, the
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network still needs to figure out by itself the amount of overexpo-
sure to correct. The reconstructions can be found in Figure 8 The
last row presents results from the experience with random overex-
posure while the two first rows shows images with constant overex-
posure. One can see that the overall exposure of the images is well
corrected and is very similar to original ones in both cases. However
the reconstructions of the highly overexposed areas, those where all
information was missing, are not so nice. Actually, those are almost
not reconstructed at all, only the edges of these areas are a bit re-
constructed. But it is hard to tell just from the comparison of these
images. A better way to do so is to compare by taking the difference
between, the reconstruction and the trivial solution (see Section 3.6),
and the original image. It will make it easier to assess both how close
is the overall exposure and how good are reconstructed the miss-
ing areas. A perfect reconstruction should appear completely black.
These comparisons can be found in Figure 9. One can see that the
non-black areas are quite smaller with our method, compared to the
trivial solution. Strangely, the network tries to correct some areas
that should not require any modification. The wall behind the pool
in the previous Figure could just be corrected by the overall expo-
sure correction but the network modified it specifically. This may
be due to the fact that the network never uses high intensities in its
reconstructions. See section 5.2 for more details on this point.

5. DISCUSSION AND FUTURE WORK

5.1. Non-stability of the experiments and confirmation bias

GANs are well known to be unstable during training. In this work we
used a couple of tricks to make it more stable and reproducible (LS-
GAN loss and spectral normalization). However, this does not fully
address the problem. There are still some instabilities in the train-
ing and running the same experiments twice can give quite different
results. We did not have the time to run each of the experiments
multiple times in order to make an average of the performances.
This would have been more reliable for sure. Instead we only ran
the experiments once but when the scores of two experiments are
close, it is hard to conclude which method or model does actually
perform better than the other. This mostly concerns the field of view
experiments where all the results are very close (see Table 4). In a
similar way, it is sometimes hard to tell which of the reconstructions
looks better than the other. This could be solved by doing some user
studies where humans are asked to choose between different recon-
struction or to rate them. It would give an unbiased metric to assess
the quality of the network. During the experiments, we had a hard
time avoiding the confirmation bias suggested by the scores. When
two scores were close, it was somehow easier to find flaws in the
reconstructions of the model that performed the worse. In such a
situation the user studies would have been really interesting, as it
would have been more objective and unbiased. But this takes time
to conduct and therefore we did not make use of it.

5.2. Generators are afraid of overexposure

An important flaw common to all our models is that the generator
does not produce images with high pixel intensities. It always learns
somehow a limit of pixel intensities that should not be crossed (see
Figures 10 and 11). It is like the generator is afraid of using high
intensities in the reconstructions because it looks like overexposure.
However, some parts of a picture could have high intensities with-
out being overexposed. This limit prevents the networks to produce
image with overexposed area but it is too restrictive. It is most of

the time around 0.8. Thus, any image that has light intensities above
this value would never be perfectly reconstructed. A way to address
this issue may be to add a new term to the loss to enforce the net-
work to produce image with a larger contrast. This may be done in a
supervised manner with a term that tries to match the contrast of the
reconstruction and the original image.

(a) Corrected image (b) Corrected histogram

(c) Original image (d) Original histogram

Fig. 10: Comparison of histograms of the original image and the
correction made by our network. For image with low pixel intensi-
ties, the limit cannot be seen and the reconstruction is of a very good
quality.

5.3. Working with different resolution

Even if our architecture is capable of dealing with any image size,
it is unlikely to perform equally good for any size. The sizes of
the fields of view of the networks are crucial for the quality of the
reconstructions. But this optimal size is likely to be dependent on
the input image size. In order to understand it, let’s take two images
of the same scene with two different resolutions. On the larger one,
the field of view contains less information about the context than on
the smaller one. Therefore it may be harder to reconstruct a bigger
image. Furthermore, it has been proven that the pix2pix architecture
does not work very well with large images [18]. In this work they
also proposed a way to address this issue. For the generator, they first
trained a regular pix2pix network on low resolution images. Then
they added a down-sampling and an up-sampling block at each end
of the network in order to increase the resolution of the images. For
the discriminator, they used three different networks with different
field of view sizes, to be able to deal with different scales. The same
problem is also addressed by [19] in a slightly different way.

5.4. Filling the missing part

Finally, the biggest flaw of our method is that it cannot reconstruct
properly the missing areas. However, this looks like an inpainting
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(a) Overexposed (b) Inverse transformation (c) Our correction (d) Ground truth

Fig. 8: Here are some examples of reconstructions generated with our method (c). This is compared to the inverse transformation defined in
section 3.6 (b) and the ground truth (c), i.e. the original image before overexposure. The first column shows the overexposed images. The last
raw has been generated with the network trained with random overexposure, for this particular image the random threshold was τ = 0.69.

(a) Original (b) Inverse mapping (c) Corrected (d) Original-inverse (e) Original-corrected

Fig. 9: Comparison of the reconstructions using the inverse transformation and our network. In order to make the comparison easier, we
took the difference in pixel intensities between the original image and each reconstructions. Zooming in, one can see that even if our method
produces some artifacts in the overexposed areas, the edges of this area are better reconstructed than with the inverse transformation. While
the rest of the image is similar.

problem: an image has some missing parts and we want to recon-
struct these areas based on the overall context. This has been ad-
dressed in multiple works such as [20, 21]. The only difficulty here
is to provide a mask of the missing area that we want to reconstruct.
One way to do so may be to use the output of the discriminator. It
gives a probability for each patch of the input image to be real or

fake. Therefore we could build a mask with all the patches where
the probability of being fake is above a certain threshold. This could
then be fed into the inpainting network to reconstruct the missing
parts.

8



Baseline Baseline +Noise Baseline+ noise+ perceptual Random overposure
IS 18.00 19.26 21.59 21.81

Luminance Sim. 88.44% 89.97% 89.46% 84.56%
Contrast Sim. 88.29% 88.74% 90.5% 88.84%

Saturation Sim. 83.23% 83.55% 85.01% 83.73%

Table 5: Overall comparison of the different experiments. Note that for the to last columns, the method is the same, only the overexposure
is changed. The scores from the last one have been obtained using a random overexposure, i.e. each image was overexposed with a random
threshold (between and 1). The last two columns have also been optimized for a longer time ( 30 hours).

(a) Corrected image (b) Corrected histogram

(c) Original image (d) Original histogram

Fig. 11: For image with pixel intensities above the limit, it is clear
that the network do not reconstruct it. The quality is obviously influ-
enced.

6. CONCLUSION

In this work, we successfully built an architecture that is able to cor-
rect overexposure on picture. We conducted some experiments in
order to test and improve our method. In the end, it works quite
well when overexposure is relatively small. Once large areas of the
picture are missing though, the network has a hard time reconstruct-
ing it and is generally able only to correct the edges of such areas.
This is not surprising as this falls under another kind of problem:
image inpainting. A combination of methods from this field and our
work could lead to an end-to-end pipeline that would be able to deal
entirely with overexposure.
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