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ABSTRACT

This paper proposes a few-shot method based on Faster R-CNN and representation learning for
object detection in aerial images. The two classification branches of Faster R-CNN are replaced by
prototypical networks for online adaptation to new classes. These networks produce embeddings
vectors for each generated box, which are then compared with class prototypes. The distance between
an embedding and a prototype determines the corresponding classification score. The resulting
networks are trained in an episodic manner. A new detection task is randomly sampled at each epoch,
consisting in detecting only a subset of the classes annotated in the dataset. This training strategy
encourages the network to adapt to new classes as it would at test time. In addition, several ideas
are explored to improve the proposed method such as a hard negative examples mining strategy and
self-supervised clustering for background objects. The performance of our method is assessed on
DOTA, a large-scale remote sensing images dataset. The experiments conducted provide a broader
understanding of the capabilities of representation learning. It highlights in particular some intrinsic
weaknesses for the few-shot object detection task. Finally, some suggestions and perspectives are
formulated according to these insights.

1 Introduction

Object detection is a key problem in computer vision. It consists in finding all occurrences of objects belonging to
a predefined set of classes in an image and classify them. Its applications range from medical diagnosis to aerial
intelligence through autonomous vehicles. Object detection methods automate repetitive and time-consuming tasks
performed by human operators until now. In the context of Remote Sensing Images (RSI), detection is used for a wide
variety of tasks such as environmental surveillance, urban planning, crops and flock monitoring or traffic analysis.

Deep learning and especially convolutional neural networks (CNNs) outperform previous methods on most computer
vision tasks and object detection is no exception. Plenty of methods have been introduced to address this challenge.
Among them, Faster R-CNN [1] and YOLO [2] may be the most well-known and studied. Even though this problem is
far from being solved, detection algorithms perform well when provided with sufficient annotated data. However, this is
often not available in practice and the creation of large dataset for detection requires both time and expertise preventing
the deployment of such methods for many use cases. Another limitation to the widespread deployment of detection
techniques is the lack of adaptability. Once fully trained, it is hard to modify a model to adapt to new objects. This is
critical for some applications which need to detect different objects from one usage to another. Aerial intelligence is an
example of such application: each mission may have its specific objects of interest and therefore a detection model
must be adaptable (literally) on the fly. The overall objective of this work is to be deployed on vertical aerial images.



Yet, large-scale dataset of such images, annotated for object detection, are rare. RSI are a convenient alternative and
provide an accurate estimation of performance in deployment.

Few-Shot Learning (FSL) techniques have been introduced to address these issues and deal with limited data. This has
been extensively studied for classification [3], [4]. Its principle is to learn general knowledge from a large dataset so
that it can generalize efficiently (i.e. quickly and from limited data) on new classes. There exist different approaches
for this task. Representation learning tries to learn abstract embeddings of images so that the representation space is
semantically organized in a way that makes classification relatively easy (e.g. with a linear classifier). Meta-learning
based methods learn a model (teacher) that helps another model (student) to perform well based on a limited amount of
data. This is often done by training both network on multiple low-data tasks (e.g. by changing classes between epochs).
Transfer learning is also a valid approach for FSL. It consists in training a model on a large dataset and then adapt it to
perform well on another smaller one. This requires a supplementary training step and is often subject to catastrophic
forgetting [5], and overfitting. It needs advanced tricks to prevent these undesirable effects.

This performs relatively well for classification but the more challenging detection task still lacks few-shot alternatives.
Though, recent work focused on Few-Shot Object Detection (FSOD) applying ideas from FSL literature to object
detection. The first approaches were mostly oriented toward transfer learning and fine-tuning [6, 7] disregarding the
others FSL practices. Some other work took inspiration from meta-learning [8] and representation learning [9]. This
is mostly applied to natural images, yet applications on remote sensing images are scarce [10, 11]. Even if object
detection is hard, applying it on remote sensing images is even harder: object’s sizes can vary greatly plus they can be
arbitrarily oriented and densely packed. These supplementary difficulties might explain why this specific topic remains
mainly untouched.

This work introduces a new few-shot learning method for object detection and evaluates its performance on aerial
images. It detects objects from only a few examples of a class and without any fine-tuning. The main idea is inspired
from prototypical networks [3] which learns an embedding function that maps images into a representation space.
Prototypes are computed from the few examples available for each class and classification scores are attributed to each
input image according to the distances between its embedding and the prototypes. The classic Faster R-CNN framework
is modified to perform few-shot detection based on this idea. Both classification branch in Region Proposal Network
(RPN) and in Fast R-CNN are replaced by prototypical networks to allow fast online adaptation. In addition, a few
improvements are introduced on the prototypical baseline in order to fix its weaknesses.

This paper begins with a brief overview of literature on object detection, few-shot learning and the intersection of these
two topics. Then the prototypical Faster R-CNN architecture is presented in detail alongside with several improvements
on our baseline. Next, the potential of the proposed modifications throughout a series of experiences is demonstrated.
Finally, the proposed approach is discussed with a critical eye, and it is asked whether representation learning is suitable
for object detection.

2 Related work

2.1 Object detection

During the last decade, deep learning and especially CNN have made impressive progresses in most computer vision
tasks. Object detection is no exception and plenty of CNN based methods were proposed to address this problem.
Among the most common, YOLO [2] is a one-stage method with a trade-off on speed. Faster R-CNN [1] is another
well-known object detection technique that focuses more on accuracy with two separate stages. Most subsequent
methods are more or less inspired from these. A common feature between these techniques is the generation of anchor
boxes. These are bounding boxes chosen with different aspect ratios and sizes, uniformly distributed on the image, that
the networks take as reference for the regression. Recently, some works tend to reduce the accuracy gap between one
and two stages methods. Especially, FCOS [12] drops completely the anchors to build a fully convolutional one stage
object detection network that matches the performance of Faster R-CNN.

As our work is mainly based on Faster R-CNN, we will describe its functioning in details. As mentioned above, it is
made of two stages: a Region Proposal Network (RPN) and a prediction head described in [13]. A third component
must also be mentioned, the backbone. This is a large CNN that extracts features from images. It is often chosen
as a ResNet [14] with a Feature Pyramidal Network (FPN) [15] on top. This extracts features from different levels
and is very helpful for detecting objects of various sizes. Once the features are extracted, they are fed into the RPN.
This network is fully convolutional and will output an objectness score oa for each generated box a (i.e. generally 3
boxes per positions in the multi-level feature map). This score represents the likeliness of having an object within the
corresponding patch in the image. In addition, the RPN outputs box regressions bR

a . The regressions, combined with the
anchors sizes and positions, give the actual boxes coordinates in the image. Then, the best scoring boxes are selected

2



to be fed to the prediction head, where boxes are refined and classified. For each box, the corresponding features are
selected through a pooling operation (RoI Align, proposed by [16]). These are flattened and passed to the second stage.
It computes refining coordinates shifts bH

j and classes scores cj for each box. Following this, a post-processing step
filters out small, low-scoring and redundant boxes.

The training of this method is straightforward, each network has two losses, one for the regression branch and one for
the classification as described below:

LR
reg(b

R
i , b̂

R
i ) = SmoothL1Loss(bR

i , b̂
R
i ), (1)

LR
obj(oi, ôi) = ôi log(oi) + (1− ôi) log(1− oi), (2)

LH
reg(b

H
j , b̂

H
j ) = SmoothL1Loss(bH

j , b̂
H
j ), (3)

LH
cls(cj , ĉj) = − log(cj), (4)

where SmoothL1loss is a slight modification to L1 error function. Below a certain threshold, the error is computed
according to L2 loss, while above that threshold L1 is used. This penalizes the network less for small errors in boxes
regressions. The variables with hat correspond to ground truth values. These losses are combined in an overall objective
function that is optimized using stochastic gradient descent:

L = LR
reg + LR

obj + LH
reg + LH

cls. (5)

During training, not all boxes are selected for computing losses. First, the generated boxes are separated into two groups:
positive examples, i.e. boxes with an overlap of at least 0.7 with a ground truth annotation, and negative examples
which represent the background class. Positive and negatives examples are included in classification losses computation
while only positives are for regression.

2.2 Few-shot learning

Few-shot learning corresponds to learning a task in a limited data setting. Specifically, a task is defined as K-shots,
N -ways learning when the training set only contains K examples for each of its N classes. In FSL literature, it is
common to introduce the query and support sets for a given task. The support contains the available examples: K
images for each of the N classes of the task. It can be seen as the training set for that task. The query set contains
images from the same classes as the support and is used for assessing the performance of the model, like a test set.

There exists different techniques to tackle low data regime. Transfer learning is one of them. It consists in training a
network on a large-scale dataset (source domain) and then fine-tuning it on the few examples (target domain) available
for the actual task. This kind of methods require re-training each time a new class is added. In the case of aerial
surveillance, this is not suitable as the adaptability must be almost immediate. In addition, these techniques are often
inclined to catastrophic forgetting [5], a recurrent problem in continual learning. Classes previously learned are forgotten
when learning to classify new classes. Therefore, we will only discuss in this paper methods based on meta learning or
representation learning.

Meta-learning, in the context of FSL, refers to methods that train a model called the meta-learner whose task will
be to help another model to train efficiently (in terms of computation and data) for the actual problem. This can be
pictured as training a teacher model whose goal is to make its student learn better. That way, the student can quickly
learn new tasks and perform well in low-data regime. Meta-learning methods often share the same training strategy
with two nested optimization loops. The inner one updates the weights of the student net, while the outer one deals
with the meta-learner. Between each iteration of the outer loop, a new task is chosen for the inner network to learn.
The student is trained on the support set while the teacher’s objective is to maximize the student performance. Many
ways of teaching were introduced. For instance, the teacher network can be trained to directly output weight updates
of the student as described in [4]. Another approach is to output only initial weights for the student as in [17]. The
starting point is hopefully better than random, thus allowing faster and better optimization. While these techniques are
promising, they do not scale very well for large networks as the teacher must be substantially larger than the learner. In
order to assess generalization performance, classes are split into two categories: base and novel classes (or equivalently
seen and unseen classes). During meta-training, tasks are sampled using only base classes. At test time, however they
can be sampled either from novel classes or both base and novel.

Another drawback is the necessary fine-tuning. Even if it should be quicker than regular transfer learning, most
meta-learning methods still require this additional step. Some exceptions are based on representation learning or metric
learning. The principle is to train a network to output an abstract representation from an input image. This is first
introduced for signature verification with siamese networks in [18]. Prototypical networks [3] is a pioneer work in using
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Figure 1: Architectural view of prototypical Faster R-CNN. Embedding vectors for each of the possible box locations is generated by
the RPN. These are compared with class prototypes to output objectness scores. The same process occurs in the second stage to
produce classes scores.

this for FSL. An embedding network is trained to produce such representations. Before inference, prototypes for each
class are computed using the embedding net and the support images. During inference, the query images are embedded
and the distance between their representations and the prototypes determine the classification scores. In [3], this is done
with a linear classifier, but other choices are possible. Relation networks [19] proposes another network to compute the
class scores from the image representation and the prototypes. Similarly, matching networks [20] used two separate
networks to embed the image and the prototypes. These methods are usually trained by randomly sampling tasks at
each epoch, just as other meta-learning methods. This succession of new tasks helps the network to generalize well and
therefore improves its accuracy on unseen classes.

2.3 Few shot object detection

The focus of FSL was previously on classification tasks. Detection is a harder problem and so is FSL. That explains
why the combination of both was only studied recently. One early work on this problem is Low-Shot Transfer Detector
[6]. It applies few-shot transfer learning in order to refine a pre-trained detection network on a small dataset. To do so,
they introduce two regularization losses during the fine-tuning phase. One forces the network to focus on new objects
by reducing the magnitude of the feature maps on background areas. The other loss prevents forgetting knowledge from
the source domain. It penalizes the refined network to have dissimilar activation in the pre-softmax layer compared to
the network trained on base classes only. Similarly, [7] proposes to first pre-train a Faster R-CNN on a base dataset and
then fine-tune only the last classification and regression layers with the new classes. This is quite similar to [6], but
even simpler as it does not need any new loss functions.

Even if RepMet [9] focuses mostly on few-shot classification, authors showed that their method can also be applied for
detection. Their approach is mainly based on metric learning. During base training, they learn alongside the network’s
weights a set of representatives for different classes (several per class). These high-dimensional vectors define the
centers of Gaussian distributions inside the embedding space. The class probabilities are assigned from the distances
between the embedding vectors and the representatives in an analogous way as in [3]. At test time, the encoding network
generates representatives from the few examples in dataset, which are then fine-tuned for a few iterations. For detection,
they replace the second stage of Faster R-CNN with their classification module. Although this method is astride on
meta-learning and representation learning it does not leverage an episodic task training strategy. Instead, it relies on
fine-tuning: it trains first on base classes and fine-tune on novel ones. To our knowledge, this is the first attempt to solve
FSOD with metric learning.
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Most recent work focuses on meta-learning in order to solve FSOD. For instance, [21] trains a one stage detector
along with a meta features extractor. This extractor is a CNN that computes a reweighting vector for each class from
the support set. When a query image is passed through the detector, the features maps output by the backbone are
channel-wise multiplied with the reweighting vectors to produce class-specific maps. These maps are then passed
to the detector’s head. Each map is responsible for detecting objects of the corresponding class. Closely related,
[8] incorporates a similar reweighting scheme in Faster R-CNN. A major difference though is that the features and
reweighting vectors are computed with the same network. A similar class-attention mechanism, but inside the RPN
network is proposed by [22]. In the second stage they use multi-relation heads that combine support set information
and query image features in multiple ways inside the classification branch. Another attempt to leverage an attention
mechanism is proposed by [23]. Query and support examples are co-adapted to reduce features discrepancies and
improve prediction both in RPN and second stage. Except the latter, these methods are trained episodically.

Different methods for combining support information with the query features exist, e.g. [11] creates a graph between
the support vectors and the query embeddings. Then a GRU [24] processes it in order to provide attention between
regions of interest and support set images. Alike this, [25] processes a graph, whose final nodes are the reweighting
vectors, with a graph convolution network. The graph is initialized with similarities between classes’ names, embedded
with GloVe [26].

With regard to FSOD on remote sensing images, very few methods exist. To the best of our knowledge, only two works
have been published on this topic. [10] improves on [21] by using an improved version of YOLO. This mainly adds
multi-scale features and predictions. This is especially important to tackle RSI as object size can vary greatly. The
second one [11], makes use of a two-stages detector and compute reweighting vectors with a GRU relation module.
Both of the methods provide benchmark on VHR-10 dataset [27], yet the number of novel classes and the different
base/novel classes splits are different, making the comparison difficult.

3 Proposed method

To deal with FSOD, prototypical Faster R-CNN is introduced. It is a modified version of Faster R-CNN based on metric
learning. The key idea is to replace the classification branches in both stages by prototypical networks. This is related
to RepMet [9] that learns representatives only in the second stage. Yet it fixes one major flaw of RepMet, the RPN.
Once trained, the RPN specializes on classes seen during training. This means that objects from new classes are filtered
out by the RPN, leaving no chance for the second stage to detect them. It has a low recall on unseen classes. This is
especially not desirable in FSL. Instead, the RPN should be able to adapt to new classes. Our method is an attempt to
fill this shortcoming.

First, a few notations are introduced. Let C = [1, N ] be the set of all classes. In the case of n-ways k-shots learning,
each task consists in detecting objects among n classes with k examples per class. At each episode a new detection task
i is randomly sampled: Ci ⊂ C with |Ci| = n. Then, data are sampled from the whole dataset to form a support and a
query sets. Si = {(x1, t1), ..., (xnk, tnk)} and Qi = {(x1, t1), ..., (xnk′ , tnk′)}. For detection, each image xj comes
with a set of annotations tj which contains the location and label of all objects in the image. Annotations that do not
belong to the episode classes are discarded. To build the support set, for each class c ∈ Ci, we select images containing
objects of class c and disregard all other objects (i.e. their annotations are not included in the support set but the image
is not masked, so they are still visible). If there are more than one object c in the image, only one is selected randomly
as the annotated example.

3.1 Prototypical Faster R-CNN

We propose to change the output dimension of the classification branches in both the RPN and the head. That way,
instead of producing a classification (or objectness) score per box, these networks output embedding vectors. Each
vector represents the information contained inside the corresponding box. The computation of the representations is
straightforward. Features at several scales are extracted by the backbone (denoted f ). These features are then fed
to the RPN that computes representation vectors for each location in the features maps (i.e. each corresponding to
an anchor). A 2-layers CNN (shared with the regression branch) is applied on each feature maps, then a RoI Align
operation extracts same-size features for each anchor. Finally, a 2-layers MLP maps these features into the embedding
space. The dimension of the representation is r = 128 and is kept fixed in all our experiments. We call the RPN
embedding pipeline g such that (f ◦ g)(xj) = zj is the set of all anchors’ embeddings for image xj .

For the second stage, the best scoring boxes produced by the RPN are selected. Their corresponding features are
cropped with RoI Align and fed to a 4-layers MLP that outputs embedding vectors as well. Note that the 2 first layers
of the head’s MLP are shared with the regression branch. As for the RPN, let h be the encoding function of the head:
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(f ◦ h)(xj) = z̃j . Fig. 1 illustrates the whole representation pipeline and how the different scores are computed in the
network.

Classes prototypes are computed from the support images, with the same network, except that only the example’s box is
used for feature pooling. When multiple examples are available for a class, their embeddings are averaged to build one
prototype per class: pi,c and p̃i,c for the RPN and the head respectively.

Given the embeddings of an image and the prototypes, we compute the likelihood for each class as follows. This
supposes that each class is represented by a Gaussian distribution centered on its prototype:

p(xj,a|yj,a = c) = exp
(−d(zj,a, pc)

2

2σ2

)
, (6)

where xj,a refers to the crop of image xj with anchor a and yj,a is its corresponding label (yj,a ∈ Ci ∪ {∅}, with ∅
representing the background class). d is a distance measure over the representation space, in our experiments, d is the
Euclidean distance. Note that in our case, the embeddings are normalized after their computation, therefore Euclidean
distance is equivalent to Cosine Similarity. σ = 0.5 is the variance of the distribution and is fixed. This likelihood
computation is the same for the RPN and the head. However, in the head, the likelihood of the background class is also
computed:

p(xj,a|∅) = 1−max
c∈Ci

p(xj,a|c). (7)

From this, we derive the objectness score in the RPN and the classification (including background) scores in the head:
oj,a = max

c∈Ci

p(xj,a|c), (8)

p(c|xj,a) =
p(xj,a|c)∑

c∈Ci∪{∅}
p(xj,a|c)

. (9)

The training is done episodically, sampling a random subset of classes Ci ⊂ C at each epoch. The embedding network is
trained using the same loss functions as Faster R-CNN (see (1)–(5)) and the same positive/negative examples selection.
The loss is computed on the query set and between each update of the network, the prototypes are recomputed from the
same support set. Once all query images have been seen by the network, a new task is sampled. In our experiments, the
query set contains 5 images for each of its n classes, this means at least 5 examples for each class, but this number
can be larger as more than one object are present in the images. The optimization is done with Adam optimizer and a
learning rate of 1e − 4. The backbone network is pretrained on ImageNet and its first layers are kept frozen during
training.

Table 1: Mean average precision over 5 runs on DOTA dataset with 95% confidence interval. Results are given for two
different train/test classes split. Split A: {0, 1, 4}, Split B: {7, 11, 13} (only test classes are given).

k shots 1 3 5 10

Split A Train classes 0.275 ± 0.01 0.352 ± 0.02 0.390 ± 0.01 0.384 ± 0.02
Test classes 0.047 ± 0.02 0.024 ± 0.01 0.038 ± 0.01 0.041 ± 0.01

Split B Train classes 0.415 ± 0.03 0.392 ± 0.03 0.434 ± 0.02 0.414 ± 0.03
Test classes 0.08 ± 0.01 0.101 ± 0.02 0.121 ± 0.01 0.101 ± 0.02

3.2 Iterative improvements

In order to improve the performance of our model, a series of improvements are described on top of the baseline
presented above.

3.2.1 Hard example mining

One issue encountered with the baseline was the detection of all training classes regardless of support examples. This
is class memorization. Although this improves performance for training classes, it produces lots of false positive
detections. In order to address this, we propose to sample hard negative examples to encourage the network to detect
support classes only. The main idea is to take advantage of the annotations for classes not selected in the current task to
find hard negative examples, i.e. classes that the network could have memorized from previous tasks. With a new task
at each epoch, it is likely that the network still produces detection for objects annotated in one of the previous epochs
if it does not rely on the support information. Therefore, these annotations can be used to find examples that should
be considered as background for the current task only. These are different from the background examples that do not
contain any class of the dataset, which are referred as easy negative examples. Hence, this encourages the network to
detect only objects annotated in the support set.
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3.2.2 Moving average prototypes

Another issue with the baseline is that the prototypes can change abruptly, either when the network is updated or when
the support set changes. This makes the training unstable. In order to prevent such rapid modification of the prototypes,
an exponential moving average is introduced to smooth the modification. Hence, p̄(t+1)

c = αpc + (1 − α)p̄
(t+1)
c . α

is set to 0.1 in our experiments. p̄
(t)
c is the averaged prototype for class c at iteration t, while p

(t)
c is the prototype

computed from the support set, for class c at iteration t (as described in section 3.1).

3.2.3 Background clustering

Lastly, the baseline shows poor separation of unseen classes embeddings. This leads to poor performance on novel
classes at test time. In order to solve this, an inspiration is drawn from [28]. At each iteration, they fit a K-means on the
learned representations. This gives pseudo-labels to train the network for classification in a self-supervised manner.
Similarly, we propose to fit a K-means on the negative embeddings (i.e. representing boxes not matched by any ground
truth object). From the resulting pseudo-labels a contrastive loss function (Triplet Loss [29]) is computed. The triplets
are formed with embeddings that were labeled identically by the K-means. It encourages the network to organize the
embedding space into tight and separated clusters. This will eventually discover semantic clusters that represent objects
unseen (i.e. non-annotated) during training.

4 Results and experiments

In order to assess the performance of our method, one dataset is chosen: DOTA [30] which contains remote sensing
images. It has 16 different classes and contains around 400k annotated objects. These objects are distributed within
2800 large-scale images and their sizes vary greatly, even within a single class as the spatial resolutions between two
images can be significantly different.

The experimental protocol is as follows: three classes are reserved for evaluation and two different splits were randomly
selected. The network is trained episodically with the remaining classes for 30k iterations. Training more improves the
performance on training classes, but the network starts to overfit and performs far worse on test classes. Hence, early
stopping, to preserve generalization on new classes. The networks are evaluated on both the base and novel classes to
assess both the learning and the generalization capabilities. For each experiment, mean average precision (mAP) is
provided, computed according to PASCAL VOC [31], with different number of shots: 1, 3, 5 and 10.

4.1 Results on DOTA

Table 1 contains the mean average precision reported on DOTA dataset with our best model, according to section 4.2.
The results are reported as the mean over 5 runs with 95% confidence intervals. We chose two different train/test classes
split randomly. From this, it can be seen that performance on test classes is far below the train classes. This is expected
since no supervision was available during training for these objects. It is interesting to see that the more examples (i.e.
shots) are given to the network for a class, the better it performs. This may be explained as more shots provide a better
approximation of the cluster’s center. Yet this pattern is not always observed, for instance with training classes of split
B, the performance is stable with respect to the number of shots. This could happen when a single class is represented
by two separate clusters. Having multiple representation for one class increase the chance of sampling representation
from different clusters. Hence, the average can be completely outside both clusters. Nevertheless, it can be seen from
Fig. 2 (which was made with one shot only) that the prototypes are often not positioned in the center of their cluster and
averaging is often a right strategy to improve performance.

It can also be seen that the increase of performance stagnates with the number of shots. Important gain is reported
between 1, 3 and 5 shots but no significant improvement from 5 to 10. A relatively low number of examples is able to
approximate correctly the class prototype. Increasing this number does not improve the positioning of the centers any
more and can even be harmful as discussed above.

More broadly, the performance is quite low both for base and novel classes and this does not meet our objectives. In
comparison, Faster R-CNN trained in a supervised manner on the complete dataset achieved around 0.7 mAP. It would
be unfair to directly compare this value with the performance of our network as it was mainly designed for adaptability.
Yet the performance loss on training classes is quite large.

Unfortunately, no other method proposed benchmark on DOTA dataset for FSOD and the very few works [11, 10] in
this field did not provide their code, thus comparison was not possible.
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4.2 Ablation study

In order to validate the hypothesis formulated in 3.2, an ablation study is conducted. The results of this analysis can
be found in Table 2. They only partially validate this hypothesis. On the one hand, the introduction of hard examples
mining and moving average prototypes improves consistently the test mAP in the one-shot setting. On the other hand,
background clustering reduces greatly the performance on train classes, while achieving similar results on test classes.
It is still unclear why this does not perform better, it will be investigated as part of future work. According to this
analysis, we chose to fix our architecture with hard example mining and the moving average as it combines best train
and test performance. Yet, those conclusions must be taken carefully since the variability between different runs is high
and the performance gains are small between the experiments.

Table 2: Ablation study on improvements described in section 3.2. Each row corresponds to the addition on top of
the baseline. HEM corresponds to hard example mining, MA to moving average prototypes and BC to background
clustering. Once again results are provided for different numbers of shots, both for train and test classes. Bold scores
correspond to highest mAP for each k, either for train or test classes.

k shots 1 3 5 10

Baseline Train 0.355 0.359 0.343 0.304
Test 0.021 0.027 0.038 0.041

+ HEM Train 0.312 0.356 0.412 0.343
Test 0.04 0.023 0.033 0.026

+ HEM + MA Train 0.265 0.339 0.37 0.351
Test 0.069 0.035 0.042 0.059

+ HEM + MA + BC Train 0.133 0.145 0.182 0.148
Test 0.043 0.041 0.047 0.026

5 Discussions and perspective

From these results, one question arises: is representation learning a suitable choice for object detection? Representation
learning methods are competitive with state-of-the-art for few-shot classification, but seem to be inappropriate for
few-shot detection. This may be because detection task requires distinguishing between more closely related images.
When a trained RPN classifies two overlapping patches of an image, it may produce completely different outputs
whether it contains an object entirely or not. Such quasi-discontinuities are unlikely to occur with a randomly initialized
network. Thus, the embeddings of two closely overlapping patches will be mapped nearby in the representation space.

Fig. 2a, where threadlike structures can be seen, illustrates this well. These patterns are made of embeddings from
close overlapping patches within the same input image. This prior spatial organization may be the cause of the low
performance of our method. This is especially true as the classifier on the representation space is equivalent to a linear
classifier (see [3] for details). For few-shot classification, there is no such prior organizing the representation space as
two different images cannot belong to the same larger image. Hence, the structures and colors are not as similar as
those of two close patches for object detection. Fig. 2 shows that training is able to overcome this and organizes the
space into semantic clusters. Yet this only happens for training classes, for which strong supervision is available during
training. For test classes, the weak supervision available is not enough to build a semantically-aware structure: the test
classes representations are mixed together and with negative examples representations (in black in Fig. 2).

Results provided in section 4.1 are computed on a test set, whose images were not seen during training. Yet, mAP
both on base and novel classes is tracked during training on images already seen by the network. It shows a large
improvement compared to what is reported in table 1 (around 0.65 mAP on train classes and 0.2 on test classes).
This strong overfitting showcases the lack of generalization of our method. It may be explained by a simple reason.
Objects can only represent a small part of the patch for object detection. Hence, much information is embedded in
the representation alongside the relevant semantic information. The position of the embedding is partially controlled
by the background and the network can easily learn correlation between background and semantic, making it easy to
detect objects correctly in previously seen images. This is especially true for small objects. In Fig. 2b, classes 1, 9
and 10 represent small vehicles and have the largest clusters. In comparison, classes 5, 6 and 14 respectively represent
basketball court, running track and soccer field. Their clusters are much tighter. Their embeddings contain much
variance compared to other classes and therefore detection is harder. Of course, this could also occur for classification
but in practice the background variety is far smaller and represent a smaller portion of the image. Hence, it produces
tighter clusters and better class separation. It can also be seen from Table 1 that the performance on split A (containing
small vehicles) is worse than on split B. Such a large difference between the splits suggests that the evaluation protocol
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(a) Before training (b) After training

Figure 2: TSNE visualization on the embedding space, before and after training. Training organizes this space semantically and
reduces the threadlike patterns representing close patches in the input image. Yet this is not completely solved for unseen classes
during training.

is not well-suited for this problem. More splits should be used in order to assess generalization on all classes and
performance metrics should be reported per class.

In order to leverage strong supervision, one could try self-supervised methods. It has recently been shown that these
methods, e.g. [28, 32] can learn generic representations that generalize for many visual tasks, in particular in low-data
regime. It would be interesting to investigate further these methods for few-shot object detection, this is planned as
future work. In addition, we plan to try methods based on attention mechanism instead of representation learning as our
experiments highlight some weaknesses of the latter. Attention mechanisms, have recently shown great performance
for plenty of tasks including few-shot object detection. Finally, a change of the underlying detection architecture is
required as modifications in Faster R-CNN can be cumbersome (due to its two stages and the generation of anchors
boxes). Instead, FCOS, which is a one-stage and anchor-less detector, is probably better suited.

In a nutshell, we proposed a novel method for few-shot object detection based on representation learning. These
early results do not meet our expectations in terms of performance. Yet the insights generated in this study allow to
understand the strength and weaknesses of representation learning for few-shot object detection task. This will be
helpful for future research. Ongoing work is focusing on improving these results using simpler architecture like FCOS.
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