

Cross-Scale Query-Support Alignment Approach for Small Object Detection in the Few-Shot Regime

Pierre Le Jeune L2TI, Université Sorbonne Paris Nord COSE Anissa Mokraoui L2TI, Université Sorbonne Paris Nord

30th IEEE International Conference on Image Processing Kuala Lumpur – October 8, 2023

- 1. Small Objects in Few-Shot Detection
- 2. Attention-based Few-Shot Object Detection Principle
- 3. Cross-scale Query-Support Alignment
- 4. Experimental Analysis
- 5. Conclusion and perspectives

1. Small Objects in Few-Shot Detection

Small objects are more difficult to detect.

Experimental evidences reported in many detection frameworks, e.g. Faster R-CNN (Ren et al. 2015), YOLO (Redmon et al. 2016) or DETR (Carion et al. 2020).

Difficulty greatly reinforced in Few-Shot Regime (Le Jeune and Mokraoui 2022).

- Small objects are poor examples for the model and miscondition the detection.
- Greater performance gap between small and large objects in Few-Shot Regime.
- Explains the performance gap between natural and aerial images in FSOD.

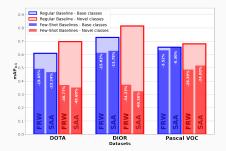


Figure 1: Few-Shot Detection performance compared on three distinct datasets, figure from (Le Jeune and Mokraoui 2022).

2. Attention-based Few-Shot Object Detection Principle

Few-Shot Object Detection literature is mainly based on attention mechanism.

Key principle:

Adapt features from the query image on-the-fly during inference from few annotated support examples.

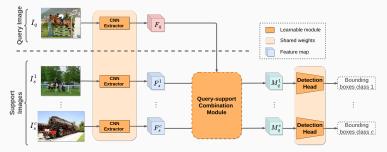


Figure 2: Attention-based FSOD principle.

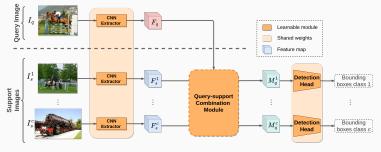


Figure 2: Attention-based FSOD principle.

Three main components:

Backbone: extracts features from the image.

Query-Support Combination Module: combines query and support features. **Detection Head:** performs object detection in a class-agnostic manner.

Objective: propose a better Query-Support combination block to improve small object detection.

Query-Support combination modules are often split into three components:

- Self Attention: combines query and support features at a global scale.
- Spatial Alignment: locally compares features from query and support.
- Feature Fusion: aggregates relevant information for detection.

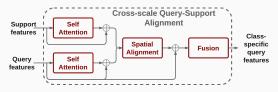


Figure 3: Overall structure of the Cross-Scale Query-Support Alignment block.

Objective: propose a better Query-Support combination block to improve small object detection.

Query-Support combination modules are often split into three components:

- Self Attention: combines query and support features at a global scale.
- Spatial Alignment: locally compares features from query and support.
- Feature Fusion: aggregates relevant information for detection.

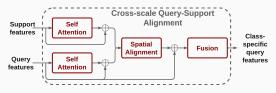


Figure 3: Overall structure of the Cross-Scale Query-Support Alignment block.

XQSA's motivation

- Combines query and support features from different scales together.
- Allows matching query and support objects from different sizes.
- \rightarrow properties not available in the literature.

3.2 Cross-scale Query-Support Alignment (XQSA) - Technical details

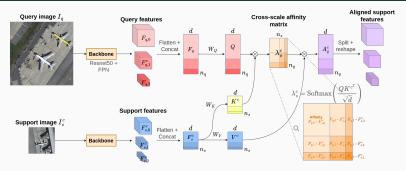


Figure 4: Illustration of the Spatial Alignment block in XQSA.

Global Attention (self-attention)

 $\psi = \mathsf{SA}(\phi) = \mathsf{Softmax}(\phi \mathbf{W}_{\mathsf{SA}}) \cdot \phi$

Spatial Alignment $Q = F_q W_Q = [F_{q,0}, F_{q,1}, F_{q,2}] W_Q$

$$\begin{split} & \mathcal{K}^{c} = F_{s}^{c} W_{\mathcal{K}} = [F_{s,0}^{c}, F_{s,1}^{c}, F_{s,2}^{c}] W_{\mathcal{K}}, \\ & \mathcal{V}^{c} = F_{s}^{c} W_{\mathcal{V}} = [F_{s,0}^{c}, F_{s,1}^{c}, F_{s,2}^{c}] W_{\mathcal{V}}. \end{split}$$

$$M_{q,l}^{\mathsf{c}} = [F_{q,l}, \mathsf{A}_{q,l}^{\mathsf{c}}]W_{F}^{l}$$

$$\lambda^{\mathsf{c}} = \operatorname{Softmax}(\frac{\mathsf{QK}^{\mathsf{cT}}}{\sqrt{\mathsf{d}}}),$$

$$A_q^c = \lambda^c V^c$$
.

ICIP 2023 - Cross-Scale Query-Support Alignment Approach for Small Object Detection in the Few-Shot Regime

4.1 Few-Shot Performance on Natural and Aerial Images

Comparison with two existing methods: **FRW** (Kang et al. 2019) and **DANA** (Chen et al. 2021).

Two aerial datasets **DOTA** (Xia et al. 2018) and **DIOR** (Li et al. 2020), and two natural datasets **Pascal VOC** (Everingham et al. 2010) and **MS COCO** (Lin et al. 2014)

		DOTA				DIOR				Pascal VOC				MS COCO				
		All	S	м	L	P	۸U	S	М	L	All	S	м	L	All	S	М	L
Base Classes	FRW DANA XQSA	49.04 53.98 51.11	25.48 37.00 26.10	59.17 62.27 59.41	63.37 70.32 64.30	62	.20 . 71 .88	8.21 10.92 10.64	48.66 49.34 45.69	80.67 83.17 82.34	63.21 65.17 62.13	15.67 18.14 15.60	47.94 50.58 48.64	81.73 80.11 75.94	29.03 38.14 31.56	13.08 23.30 16.13	35.87 51.85 40.13	48.00 56.38 49.83
Novel Classes	FRW DANA XQSA	37.29 36.38 41.00	13.99 14.33 17.84	34.11 40.00 44.57	59.31 64.64 54.46	38	.29 .18 . 51	2.48 3.21 4.12	33.74 34.91 40.69	59.38 60.99 58.21	48.72 52.26 53.94	16.44 10.05 19.46	26.71 24.67 34.86	68.27 67.23 66.14	24.09 24.75 25.03	11.53 12.01 12.57	22.45 29.40 26.05	38.69 37.95 38.55

Table 1: Performance comparison between XQSA, FRW, and DANA. mAP_{0.5} values are reported separately for base (top) and novel (bottom) classes on DOTA, DIOR, Pascal VOC, and MS COCO with K = 10 shots. mAP values are reported for All, Small ($\sqrt{wh} < 32$), Medium ($32 \le \sqrt{wh} < 96$) and Large ($\sqrt{wh} \ge 96$) objects.

\rightarrow XQSA largely improves the detection of small objects both for natural and aerial images in the few-shot regime.

 \rightarrow Improvement at the cost of performance on larger objects, but overall it helps a lot for aerial images.

ICIP 2023 - Cross-Scale Query-Support Alignment Approach for Small Object Detection in the Few-Shot Regime

Each component of the Cross-Scale Query-Support Alignment (XQSA) block is useful to improve novel classes detection performance.

Performance on base classes are also improved to a lesser extent.

Baseline	~	~	~	~
Cross-scale Alignment		\checkmark	\checkmark	\checkmark
Fusion Layer			\checkmark	\checkmark
Query-Support Self-Attention				\checkmark
Base classes	49.20	49.46	49.13	51.11
Novel classes	36.52	38.84	40.31	41.01

Table 2: Ablation study of the XQSA attention method on DOTA dataset. $mAP_{0.5}$ scores are reported for base and novel classes with K = 10 shots.

Key takeaways

- XQSA largely improves the detection performance of small object in the few-shot regime.
- Improvement on small target at the cost of larger objects.
- Very helpful for aerial images.

Perspectives

- Design attention mechanism for both small and large objects.
- While XQSA improves on small objects, the performance on small target is still low, adjustments required in other part of the framework (e.g. backbone, detection head, or training procedure).

Thank you for your attention

Any questions 😮

https://pierlj.github.io

References i

Carion, Nicolas et al. (2020). "End-to-end object detection with transformers". In: European Conference on Computer Vision. Springer, pp. 213-229. Chen, Tung-I et al. (2021). "Should I Look at the Head or the Tail? Dual-awareness Attention for Few-Shot Object Detection". In: arXiv preprint arXiv:2102.12152. Everingham, Mark et al. (2010). "The pascal visual object classes (voc) challenge". In: International journal of computer vision 88.2, pp. 303-338. Kang, Bingyi et al. (2019). "Few-shot object detection via feature reweighting". In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8420-8429. Le Jeune, Pierre and Anissa Mokraoui (2022). "Improving Few-Shot Object Detection through a Performance Analysis on Aerial and Natural Images". In: Proceedings of the 30th European Signal Processing Conference (EUSIPCO). Li, Ke et al. (2020). "Object detection in optical remote sensing images: A survey and a new benchmark". In: ISPRS Journal of Photogrammetry and Remote Sensing 159, pp. 296-307. Lin, Tsung-Yi et al. (2014). "Microsoft coco: Common objects in context". In: European conference on computer vision. Springer, pp. 740-755. Redmon, Joseph et al. (2016), "You only look once: Unified, real-time object detection", In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788. Ren. Shaoging et al. (2015). "Faster r-cnn: Towards real-time object detection with region proposal networks". In: Advances in neural information processing systems 28, pp. 91–99. Xia, Gui-Song et al. (2018). "DOTA: A large-scale dataset for object detection in aerial images". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983.