
Bayesian Data Augmentation

Pierre Le Jeune - s182169@student.dtu.dk

1 Introduction

For years, deep learning methods have proved to be really effective. Major breakthroughs
have been made thanks to those kind of models in the past few years, in computer vision,
medicine, robotic, etc. Yet, to reach such performances, deep learning requires a lot of data
to train on. Data augmentation techniques focus on generating new samples from datasets
in order to create more training examples and improve performances of already existing
models. In this work, our goal was first to reproduce the work from [1], that uses generative
adversarial networks to create new training examples during the training. Then we compare
the performances with state-of-the-art augmentation techniques introduced in [2]. Finally,
we try to combine those techniques in different ways.

2 Background

2.1 Data augmentation

Data augmentation is an usual technique used in Deep Learning to improve performances
of various models. The main idea of Data Augmentation is to generate data points similar
to training examples. Most of the time, this is done by finding some reasonable transfor-
mations, i.e. transformations which modify data without changing the label. For images,
transformations can be random rotations, translations, scaling but it can also be more com-
plex such as the ones describe in [2]. These transformations are represented by a restricted
class (Continuous and Piecewise-Affine - CPA) of diffeomorphisms over the training man-
ifold. With this restriction, the transformations are reasonable and tractable, which are
fundamental properties to build real-world applications. Figure 1 shows examples of the
effects of such transformations on MNIST images. An other benefit of these transformations
is that their parametrizations can be learned whereas most of data augmentation techniques
require manual parametrization that are time-consuming and seldom optimal.

2.2 Generative adversarial networks

Generative adversarial networks are a class of generative models introduced by Goodfellow
in [3]. Since their introduction in 2014, GAN have proved their effectiveness to generate
high quality samples (see Figure 2). The main idea of these models is to train two separate
networks, a generator and a discriminator at the same time. The generator tries to produce

1



Figure 1: Example of transformations randomly sampled after training. Top row contains
images from MNIST dataset and bottom row contains the same images transformed. Image
from [2].

Figure 2: Example of high quality images created by Style-GAN [5].

data similar to training examples, while the discriminator tries to distinguish between real
and fake samples. To do so, the generator and discriminator are trained to minimize their
own loss function:

LD(θD, θG) = −1

2
Ex∼pdata logD(x)− 1

2
Ez log(1−D(G(z))) (1)

LG(θD, θG) = −LD(θD, θG) (2)

Where D and G are functions representing respectively the discriminator and the generator
with their own parameters θD and θG. The variable z is a latent variable sampled from a
normal distribution: z ∼ N (0, I).

This sets up a minimax zero-sum game between the generator and the discriminator where
the Nash-equilibrium is achieved when G(z) = pdata, i.e. when the generator has perfectly
learned the distribution of the training data. However, in practice this loss does not perform
well and another loss is used for the generator in order to improve training.

LG(θD, θG) = −1

2
Ez logD(G(z)) (3)

A more detailed analysis of the difference between GAN losses can be found in [4].

2



2.3 Bayesian data augmentation using GANs

As mentioned before, GAN and data augmentation share a common goal: create samples
from the training distribution. This is why GAN can be very helpful to enrich datasets.
Previous works have already done it in several ways [1, 6, 7] and have shown significant
performance improvements compared to classical data augmentation techniques. In our
work, we will focus on the method from [1] where a GAN and a classifier are trained at
the same time. The GAN is still composed of a generator and a discriminator trained to
minimize losses described respectively by equation (3) and (1). The classifier part is then
trained with the following loss:

LC(θD, θG, θC) = −1

2
Ex∼pdata logC(x)− 1

2
Ez logC(z) (4)

3 Experiments

The main experiments conducted in this work have been focused on comparing the two data
augmentation techniques described before: the AlignMNIST dataset from [2] and Bayesian
data augmentation using GANs from [1]. Then we tried to combine those techniques in
two different ways. First by making GAN learn the transformations and then create fake
images from the real distribution by applying the learned transformations. Then, in a simpler
manner, by training the GAN from section 2.3 on AlginMNIST dataset.

3.1 Comparison between Bayesian and learned data augmentation

Most of this work was spent on the comparison between two existing data augmentation
techniques described above. In order to make fair comparisons, we used the same classifier
for both methods using the same parameters. The classifier was a 3-layers MLP (with 2048
units per layer). Only the GAN architecture and parameters have been optimized. This is
just because the model used to create AlignMNIST dataset has also been optimized to reach
the best performances. All the results from those comparisons are listed in the table 3.1. In
this table we compare, a vanilla MLP classifier trained on MNIST, the same classifier trained
on both AlignMNIST and AlignMNIST500 defined in [2] and the data augmentation GAN
(DAGAN).

Augmentation technique None AlignMNIST AlignMNIST500 DAGAN
Test accuracy 97.14% 97.97% 97.09% 98.27%
Number of epochs 100 2 1 50
Number of updates 39100 71000 76000 23500
Training time 0.3h 0.5h 0.5h 1.5h

Table 1: Test accuracy score of different augmentation techniques applied on the same 3-
layers MLP. Models have been trained until reaching convergence, this is why the number
of epoch and updates changes.

3



From these results, it can be seen that Bayesian data augmentation seems to be performing
a bit better than the AlignMNIST dataset. However the results found with AlignMNIST
are way bellow the one described in [2], where the same MLP achieved a 99.42% test accu-
racy. This might be because we did not optimize the parameters of the classifier much for
these experiments, but this choice was made to ensure a fair comparison between different
techniques.

3.2 Pedagogical GAN

Even though the results of DAGAN are quite good, the image generated (see Figure 3) are
not of good-quality. One way to understand that phenomenon is that the GAN does not try
to generate nice images but instead tries to generate images that will be challenging for the
classifier. It can be seen as a teacher providing challenging and pedagogical exercises to his
students to make them progress.

Figure 3: Example of images generated by the Data Augmentation GAN.

One way to make sure that the generator will produce such challenging examples for the
classifier is to add a term to the generator loss that is low when the classifier is wrong and
high otherwise. One way to do so it to re-write (3) as follows:

LG(θD, θG, θC) = −1

2
Ex∼p(z) logD(G(z))− 1

2
Ez log(1− C(G(z))) (5)

Using this loss for the generator does not affect much results but decreases a lot the quality
of generated images (see Figure 4 and Table 3.2). The fact that the network is still learning
well from those examples is surprising and should be further investigated. The size of the
discriminator and generator seems to have a great impact on the quality of the generated
samples, the bigger the networks were, the better the samples looked. However, increasing
the capacity of the GAN was not synonym of better performances.

Augmentation technique None DAGAN PGAN
Test accuracy 97.14% 98.27% 98.39%
Number of epochs 100 50 50
Number of updates 39100 23500 23500
Training time 0.3h 1.5h 1.5h

Table 2: Test accuracy comparison between Data Augmentation GAN (DAGAN) and Ped-
agogical GAN (PGAN).

4



Figure 4: Images generated by the Pedagogical GAN.

3.3 Learning Bayesian transformations

After the comparison detailled above, we tried to implement a new method combining
Bayesian data augmentation and learnable transformations. The idea here is to have a
GAN that learns to generate the parameters of the transformations. Then for a batch of
images, the generator creates fake images by applying the generated transformations to the
current batch of images. The discriminator still tries to distinguish between real and fake
images while the classifier tries to predict the classes of all images. Thereby, the losses
from (1), (3) and (4) can still be used as before. We will refer to this architecture as Data
Augmentation Transformation GAN (DATGAN).
This method was hard to train and results have not been consistent over different runs.
Though, some runs have shown promising results with higher performances than the vanilla
MLP. But it remains quite far from other data augmentation techniques in term of perfor-
mances while being harder to train and taking way more time to reach convergence. The
learned transformations seems to be reasonable, but looks suspiciously close to identity (see
Figure 5). It might certainly be mode collapse of the generator, obviously learning identity
is the best way to fool the discriminator. This explains why the accuracy results do not show
much improvement compared to vanilla MNIST (see Table 3.3).

Figure 5: Transformed images with learned transformation with DATGAN

Figure 6: Example of transformation generated by DATGAN. First rows contains images
from MNIST and the second one contains the corresponding transformed images using gen-
erated transformations.

Augmentation technique None AlignMNIST DAGAN DATGAN
Test accuracy 97.14% 97.97% 98.27% 97.46%
Number of epochs 100 2 50 50
Number of updates 39100 71000 23500 23500
Training time 0.3h 0.5h 1.5h 2.3h

Table 3: Result of experiment conducted on DATGAN architecture.

5



3.4 Augmented dataset and Bayesian data augmentation

This last experiment was pretty simple compared to the first two. The idea was to replace the
MNIST dataset by the AlignMNIST and train the DAGAN architecture on it. This allows
to get benefits from both data augmentation techniques and the results obtained are higher
than in any of the previous experiments. Combining these techniques is computationally
expensive, it took way longer to reach convergence. Nevertheless, that seems worthwhile as
the accuracy gain was almost the sum of the gains of each separated techniques. That means
that these techniques are not mutually exclusive and can work together. The results of this
experiment can be found in table 3.4. As before the table contains as well some results of
the previous experiments for the sake of comparison.

Augmentation technique None AlignMNIST DAGAN DAGAN + AlignMNIST
Test accuracy 97.14% 97.97% 98.27% 99.23%
Number of epochs 100 2 50 2
Number of updates 39100 71000 23500 71000
Training time 0.3h 0.5h 1.5h 2.5h

Table 4: Results of combining DAGAN and AlignMNIST dataset.

4 Discussion

The data augmentation techniques compared above have all their pros and cons. Data
augmentation GAN seems to reach higher performances but the training is 3 times longer
than training on AlignMNIST. Of course, AlignMNIST dataset must have taken some time
to be generated, but once it is done training is fast while DAGAN always needs a lot of
time to train. However, if time is not the limiting factor but memory is, DAGAN might be a
good alternative as it does not require to store huge dataset in memory as AlignMNIST does.
Furthermore, the technique used in [1] can be applied to any kind of data while AlignMNIST
can only be done on images. Therefore, the Pedagogical GAN extension quickly tackled in
this work (section 3.2) is also applicable to and should be investigated further.
Also one important flaw of data augmentation techniques using GAN is that it might be quite
difficult to make the GAN converging without falling in mode collapse (i.e. the generator
finds a local optimum to its loss by always generating the same example to fool the discrim-
inator). This is a common problem that have been addressed in many ways in [8, 9, 10].
Even if none of those techniques have been recognized as a full solution to address mode
collapse, it might be interesting to improve the DAGAN architecture based on these works.

5 Conclusion

To conclude, this work has made a fair comparison between different data augmentation tech-
niques and have highlighted their pros and cons. Bayesian data augmentation can perform

6



as well as state-of-the-art augmented datasets on MNIST and still has room for improve-
ments. Finally, we have proved that these techniques are not mutually exclusive and can
work together in order to achieve higher performances rather easily.

References

[1] Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. A bayesian data
augmentation approach for learning deep models. In Advances in Neural Information
Processing Systems, pages 2797–2806, 2017.

[2] Søren Hauberg, Oren Freifeld, Anders Boesen Lindbo Larsen, John Fisher, and Lars
Hansen. Dreaming more data: Class-dependent distributions over diffeomorphisms for
learned data augmentation. In Artificial Intelligence and Statistics, pages 342–350, 2016.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680, 2014.

[4] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

[5] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. arXiv preprint arXiv:1812.04948, 2018.

[6] Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative
adversarial networks. arXiv preprint arXiv:1711.04340, 2017.

[7] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis
with auxiliary classifier gans. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 2642–2651. JMLR. org, 2017.

[8] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[9] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative
adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

[10] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In Advances in neural information
processing systems, pages 2234–2242, 2016.

7


